RCN: Patterns, Places, People: A Network for Scalable Airborne Observation of Socio-Environmental Systems

RCN:模式、地点、人物:社会环境系统可扩展机载观测网络

基本信息

项目摘要

Addressing many of the challenges society faces, including climate change, food and water insecurity, and biodiversity loss, requires a better understanding of the interactions between people and their environment. Important interactions depend on scale (e.g., individuals, communities, government) and environmental conditions, suggesting the value in a landscape perspective. Landscapes include people with diverse perspectives and experiences, and there are many different fields of research relevant to understanding how humans and their non-human counterparts interact with changing environments. For this reason, the study of Socio-Environmental Systems (SES) can benefit from transdisciplinary cooperation that engages stakeholders in the development of scientific research that recognizes and leverages the social and behavioral dynamics of ecological systems. This Research Coordination Network (RCN) project will develop the Landscape Exchange Network for Socio-environmental systems research (LENS), which will leverage detailed observations from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) to study SES across the United States. LENS will build a network of researchers and stakeholders with interest in the NEON sites currently observed by the AOP. LENS will collaboratively work to understand the variability in SES across NEON sites and to address environmental outcomes of societal concern to LENS membership. Broader impacts of this project will include training a graduate student and engaging approximately 1 million people that live within or in close proximity to NEON AOP landscapes. Addressing privacy and ethical concerns, issues of environmental justice, and other concerns of large- and small-holder land-owners and -managers within these landscapes will be central to the work of the RCN.To improve capacity for SES research, societal understanding of SES, and environmental outcomes, this project will initiate and coordinate an RCN for Socio-environmental systems research. LENS will (Objective #1) characterize SES represented in the landscapes surveyed by the NEON AOP. As these SES are characterized, and in collaboration with NEON domain managers, LENS will identify and engage stakeholders in network activities from AOP landscapes. With scientist and stakeholder members, LENS will (Objective #2) develop strategies that support an effective translational ecology approach in these landscapes. In doing so, LENS will (Objective #3) develop and communicate methods for using AOP data in SES research using the translational ecology approach. These objectives will be met through a combination of virtual and in-person meetings, data discovery and sharing, development of an online repository of AOP-related computational tools, and production of communication products. The network will create and openly share an accessible, curated and transdisciplinary repository of data relevant to SES in the AOP landscapes, and will strengthen inter-institutional pathways for translational ecology employing AOP. These broader impacts will be a new model for engagement of the public in scientific research.This project is being jointly funded by the Macrosystems Biology & NEON-Enabled Science and the Human-Environment & Geographical Sciences programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
应对社会面临的许多挑战,包括气候变化、粮食和水不安全以及生物多样性丧失,需要更好地了解人与环境之间的相互作用。重要的相互作用取决于规模(例如,个人,社区,政府)和环境条件,表明在景观的角度来看的价值。景观包括具有不同观点和经验的人,并且有许多不同的研究领域与了解人类及其非人类同行如何与不断变化的环境互动有关。出于这个原因,社会环境系统(SES)的研究可以受益于跨学科的合作,使利益相关者参与科学研究的发展,认识到并利用生态系统的社会和行为动态。该研究协调网络(RCN)项目将开发社会环境系统研究景观交换网络(透镜),该网络将利用国家生态观测网络空中观测平台(氖AOP)的详细观测来研究美国各地的SES。透镜将建立一个研究人员和利益相关者网络,对AOP目前观察到的氖站点感兴趣。透镜将协同工作,以了解氖站点之间SES的变化,并解决透镜成员社会关注的环境后果。该项目的更广泛影响将包括培训一名研究生,并吸引大约100万居住在氖AOP景观内或附近的人。解决隐私和道德问题,环境正义问题,以及大,小土地所有者和管理者在这些景观的其他问题将是RCN的工作的核心。为了提高SES研究的能力,社会对SES的理解和环境成果,该项目将启动和协调RCN的社会环境系统研究。透镜将(目标1)描述氖AOP调查的景观中所代表的SES。由于这些SES的特点,并与氖域管理器的合作,透镜将识别和参与从AOP景观的网络活动的利益相关者。与科学家和利益相关者成员,透镜将(目标#2)制定战略,支持在这些景观有效的转化生态学方法。在此过程中,透镜将(目标#3)开发和交流在SES研究中使用AOP数据的方法,使用转化生态学方法。这些目标将通过虚拟会议和面对面会议、数据发现和共享、开发与AOP相关的计算工具的在线存储库以及制作通信产品来实现。该网络将创建并公开共享AOP景观中与SES相关的可访问,策划和跨学科数据库,并将加强采用AOP的转化生态学的机构间途径。这些更广泛的影响将成为公众参与科学研究的新模式。该项目由宏观系统生物学NEON使能科学和人类环境地理科学项目共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cathlyn Davis其他文献

Environmental citizen science practices in the ILTER community: Remarks from a case study at global scale
ILTER 社区中的环境公民科学实践:全球范围内的案例研究评论
  • DOI:
    10.3389/fenvs.2023.1130020
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    C. Bergami;A. Campanaro;Cathlyn Davis;A. L’Astorina;A. Pugnetti;A. Oggioni
  • 通讯作者:
    A. Oggioni
Scientists’ attitudes about citizen science at Long-Term Ecological Research (LTER) sites
长期生态研究 (LTER) 站点科学家对公民科学的态度
  • DOI:
    10.3389/fenvs.2023.1130022
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. L’Astorina;Cathlyn Davis;A. Pugnetti;A. Campanaro;A. Oggioni;C. Bergami
  • 通讯作者:
    C. Bergami

Cathlyn Davis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cathlyn Davis', 18)}}的其他基金

Streamlining Embedded Assessment to Understand Citizen Scientists' Skill Gains
简化嵌入式评估以了解公民科学家的技能收益
  • 批准号:
    1713424
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Developing rural girls' STEM competency and motivation through communicating scientific topics with advanced technology
通过利用先进技术交流科学主题,培养农村女孩的 STEM 能力和积极性
  • 批准号:
    1657317
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Citizen Science Embedded Assessment
公民科学嵌入式评估
  • 批准号:
    1422099
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Validating an Innovative Technology Classroom Observation Protocol (IT-COP) in High School Science Classrooms
合作研究:在高中科学课堂中验证创新技术课堂观察协议(IT-COP)
  • 批准号:
    1438368
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Flood of Mud: The Roanoke River -- Past and Future
泥浆泛滥:罗阿诺克河——过去与未来
  • 批准号:
    0527540
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Inquiring with GIS (I-GIS) Project: A Partnership Between Scientists and Educators
探究 GIS (I-GIS) 项目:科学家和教育工作者之间的伙伴关系
  • 批准号:
    0422545
  • 财政年份:
    2004
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Uncovering the evolutionary patterns of the Aculeata stinger
揭示 Aculeata 毒刺的进化模式
  • 批准号:
    24K18174
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
  • 批准号:
    2346471
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
环境变化对南极湖泊微生物自组织模式的影响
  • 批准号:
    2333917
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AGS-PRF: Understanding Historical Trends in Tropical Pacific Sea Surface Temperature Patterns
AGS-PRF:了解热带太平洋海面温度模式的历史趋势
  • 批准号:
    2317224
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Award
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了