Developing Authentic and Fair Computer Science Assessments

制定真实且公平的计算机科学评估

基本信息

  • 批准号:
    2100296
  • 负责人:
  • 金额:
    $ 87.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to promote equitable design of Computer Science (CS) assessment in secondary and post-secondary education in the United States and globally, increasing the diversity of students engaging in CS learning through reduced test bias. In this study, we aim to address difficulties in assessing computer programming by investigating critical characteristics of programming tasks using both response process and product data. Findings will have direct practical implications for developing authentic, fair and valid assessment of learners with different demographic backgrounds. Through advancing our understanding of the cognitive processes underlying programming thereby informing ways to better teach, learn, and assess programming skills, we expect the project to impact the broader CS education community through shareable data sets to the general public, assessment innovations in large CS classrooms, actionable insights on test bias for CS instructors, and the engagement of undergraduates of diverse gender, race, and ability. The research team from the University of Washington also intends to integrate scientific discoveries from this study into the university’s publicly available course materials. The planned dissemination will maximize outreach to various outlets such as the NSF-supported Exploring Computing Education pathways that brings together state leaders shaping U.S. K-12 CS Education curricula, practices, and standards.This project consists of foundational research on assessing, learning and teaching computer programming skills. The project will capitalize on the ability of recording the coding process via keystroke logs to extract and summarize vast amounts of fine-grained information captured by observing program edits. We aim to study the relations between process and task characteristics, identifying patterns that are indicative of proficiencies and suggest fluency or dysfluency. Such identification will, in turn, allow for designing instructional, learning, or assessment materials that are targeted at specific needs of learners. We plan to triangulate different types of student data to address research questions around detecting meaningful behavioral patterns from timing and process data when students are engaged with computer programming, relations between tasks characteristics and programming process, student knowledge, attitudes, experience and proficiency, as well as the extent to which task design contribute to the performance patterns detected for students that vary along gender, ethnicity, and native language. The project will use controlled experiments and cognitive interviews to collect quantitative and qualitative data. Multiple instruments will be used for data collection, such as the ETS Major Field Test-Computer Science. In terms of data analysis, the project will leverage various analytical and modeling techniques from the fields of psychometrics, statistics, machine learning, and educational data mining. Findings from this project will offer empirically-tested guidelines on which task characteristics to account for when designing fair and valid assessments across different demographic groups. This project is funded by the EHR Core Research (ECR) program, which supports work that advances fundamental research on STEM learning and learning environments, broadening participation in STEM, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在促进美国和全球中学和中学后教育中计算机科学(CS)评估的公平设计,通过减少测试偏差来增加参与CS学习的学生的多样性。在这项研究中,我们的目标是解决困难,评估计算机编程,通过调查的关键特性的编程任务,使用响应过程和产品数据。研究结果将有直接的实际意义,发展真实,公平和有效的评估不同的人口背景的学习者。通过推进我们对编程认知过程的理解,从而为更好地教授、学习和评估编程技能提供信息,我们希望该项目通过向公众提供可共享的数据集、大型CS教室的评估创新、对CS教师测试偏见的可操作见解以及不同性别、种族和能力的本科生的参与,来影响更广泛的CS教育社区。来自华盛顿大学的研究小组还打算将这项研究的科学发现整合到该大学的公开课程材料中。计划的传播将最大限度地扩大到各种渠道,如NSF支持的探索计算教育途径,汇集了国家领导人塑造美国K-12 CS教育课程,实践和标准。该项目包括评估,学习和教学计算机编程技能的基础研究。该项目将利用通过日志记录编码过程的能力,以提取和总结通过观察程序编辑捕获的大量细粒度信息。我们的目标是研究过程和任务特征之间的关系,识别模式,是熟练的指示,并建议流畅或不流畅。这种确定反过来又有助于设计针对学习者具体需要的教学、学习或评估材料。我们计划对不同类型的学生数据进行三角分析,以解决以下研究问题:从学生从事计算机编程时的时间和过程数据中检测有意义的行为模式,任务特征与编程过程之间的关系,学生的知识,态度,经验和熟练程度,以及任务设计对检测到的学生表现模式的贡献程度,这些表现模式沿着性别而变化,种族和母语。该项目将使用控制实验和认知访谈来收集定量和定性数据。多个工具将用于数据收集,如ETS专业领域测试-计算机科学。在数据分析方面,该项目将利用心理测量学、统计学、机器学习和教育数据挖掘领域的各种分析和建模技术。该项目的研究结果将提供经过实践检验的指导方针,说明在设计不同人口群体的公平有效评估时应考虑哪些任务特征。该项目由EHR核心研究(ECR)计划资助,该计划支持推进STEM学习和学习环境的基础研究,扩大STEM参与,以及STEM劳动力发展的工作。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Decade of Demographics in Computing Education Research: A Critical Review of Trends in Collection, Reporting, and Use
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Ko其他文献

P3.02c-056 Interim Results From the Phase I Study of Nivolumab + nab-Paclitaxel + Carboplatin in Non-Small Cell Lung Cancer (NSCLC): Topic: IT
  • DOI:
    10.1016/j.jtho.2016.11.1851
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan W. Goldman;Ben George;Martin Gutierrez;Amy Ko;Peter O'Dwyer;Gregory Otterson;Hatem Soliman;Nataliya Trunova;David Waterhouse;Karen Kelly
  • 通讯作者:
    Karen Kelly
Robust Analysis of Metabolic Pathways
代谢途径的稳健分析
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Gruber;Amy Ko;Michael MacGillvray;Miranda Sawyer
  • 通讯作者:
    Miranda Sawyer
MA08.06 Impact of Depth of Response (DpR) on Survival in Patients with Advanced NSCLC Treated with First-Line Chemotherapy
  • DOI:
    10.1016/j.jtho.2016.11.438
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Morgensztern;Mary O'Brien;Teng Ong;Mark Socinski;Pieter Postmus;Amy Ko
  • 通讯作者:
    Amy Ko
Investigating the Role of ventral veins lacking in the Endocrine Regulation of Metamorphic Timing
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amy Ko
  • 通讯作者:
    Amy Ko
P1.47: ABOUND.sqm QoL by Response: Interim Analysis of Squamous NSCLC Pts Treated With nab-Paclitaxel/Carboplatin Induction Therapy: Track: Advanced NSCLC
  • DOI:
    10.1016/j.jtho.2016.08.069
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Corey Langer;Vera Hirsh;Katayoun I. Amiri;Amy Ko;Jeanna Knoble;Melissa Johnson;Robert Jotte;Michael Mccleod;Teng Jin Ong;Ray Page;David Spigel;Howard J. West;Nataliya Trunova
  • 通讯作者:
    Nataliya Trunova

Amy Ko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Ko', 18)}}的其他基金

Collaborative Research: An Equitable, Justice-Focused Ecosystem for Pacific Northwest Secondary CS Teaching
合作研究:太平洋西北地区中学计算机教学的公平、注重正义的生态系统
  • 批准号:
    2318257
  • 财政年份:
    2023
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
Justice-Focused Secondary CS Teacher Education
以正义为中心的中学计算机教师教育
  • 批准号:
    2031265
  • 财政年份:
    2020
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
EXP: Automatically Synthesizing Valid, Personalized, Formative Assessments of CS1 Concepts
EXP:自动综合有效的、个性化的、形成性的 CS1 概念评估
  • 批准号:
    1735123
  • 财政年份:
    2017
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Programming Strategies
SHF:媒介:协作研究:编程策略
  • 批准号:
    1703304
  • 财政年份:
    2017
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
HCC: Large: Collaborative Research: Variations to Support Exploratory Programming
HCC:大型:协作研究:支持探索性编程的变体
  • 批准号:
    1314399
  • 财政年份:
    2013
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
CER: Collaborative Research: Computing Education through Collaborative Debugging
CER:协作研究:通过协作调试进行计算教育
  • 批准号:
    1240786
  • 财政年份:
    2012
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
CAREER: Enabling and Exploiting Evidence-Based Bug Triage
职业:启用和利用基于证据的错误分类
  • 批准号:
    0952733
  • 财政年份:
    2010
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Continuing Grant
WORKSHOP: Visual Languages and Human-Centric Computing Conference 2010 Doctoral Consortium: Democratizing Computational Tools
研讨会:视觉语言和以人为本的计算会议 2010 年博士联盟:计算工具民主化
  • 批准号:
    1032097
  • 财政年份:
    2010
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
WORKSHOP: VL/HCC'09 Doctoral Consortium: Democratizing Access to Computational Tools
研讨会:VL/HCC09 博士联盟:计算工具的民主化
  • 批准号:
    0929989
  • 财政年份:
    2009
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant

相似海外基金

GP-UP Ocean Research College Academy Engagement in Authentic Geoscience Learning Ecosystems (ORCA-EAGLE)
GP-UP 海洋研究学院学院参与真实的地球科学学习生态系统 (ORCA-EAGLE)
  • 批准号:
    2326962
  • 财政年份:
    2024
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
Diversifying STEM Teacher Education via Evidence-based Instruction and Authentic Research Experiences
通过循证教学和真实研究经验实现 STEM 教师教育多元化
  • 批准号:
    2243444
  • 财政年份:
    2024
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Continuing Grant
The Intuitive Social Dynamics of Authentic Language Teaching
真实语言教学的直观社会动力
  • 批准号:
    24K04061
  • 财政年份:
    2024
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Addressing the Challenge of Authentic Inquiry at Scale: Probing and Supporting Teaching Assistants’ Implementation of a Model-Based-Inquiry Curriculum
应对大规模真实探究的挑战:探索和支持助教——基于模型的探究课程的实施
  • 批准号:
    2400787
  • 财政年份:
    2023
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
"Quantification of the Influence of Key Meat Components on the Authentic Taste and Flavour of Meat"
“量化关键肉类成分对肉类真实味道和风味的影响”
  • 批准号:
    2885051
  • 财政年份:
    2023
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Studentship
Targeted Infusion Project: Innovating Writing-To-Learning Pedagogy To Promote And Assess Deep Conceptual Understanding And Mindful Learning Across Authentic STEM Education Settings
有针对性的注入项目:创新从写作到学习的教学法,以在真实的 STEM 教育环境中促进和评估深刻的概念理解和正念学习
  • 批准号:
    2306566
  • 财政年份:
    2023
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
Modules for Statistics Graduate Teaching Assistants Learning to Teach Equitably with Authentic Data
统计学研究生助教学习如何使用真实数据进行公平教学的模块
  • 批准号:
    2315435
  • 财政年份:
    2023
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Standard Grant
Development of model programs for career education in junior and high schools to realize "authentic learning"
开发初高中职业教育示范项目,实现“真实学习”
  • 批准号:
    23K02711
  • 财政年份:
    2023
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Online Participatory Digital Storytelling for People with Endometriosis: Investigating Therapeutic Potential, Authentic Portrayal, and Knowledge Translation
为子宫内膜异位症患者提供在线参与式数字故事讲述:研究治疗潜力、真实描述和知识转化
  • 批准号:
    479880
  • 财政年份:
    2023
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Operating Grants
Quantification of the role of key components of meat on development of authentic taste and flavour
量化肉类关键成分对真实味道和风味发展的作用
  • 批准号:
    BB/Y512709/1
  • 财政年份:
    2023
  • 资助金额:
    $ 87.74万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了