Studies in Moduli Theory and Birational Geometry

模理论与双有理几何研究

基本信息

  • 批准号:
    2100548
  • 负责人:
  • 金额:
    $ 33.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The area of study of this project lies within algebraic geometry, the branch of mathematics devoted to geometric shapes called algebraic varieties, defined by polynomial equations. Algebraic geometry has significant applications in coding, industrial control, computation, and theoretical physics, where physicists consider algebraic varieties as a piece of the fine structure of our universe. One focus in this project is Moduli theory, which studies a remarkable phenomenon in which the collection of all algebraic varieties of the same type is often manifested as an algebraic variety in its own right, called a moduli space. Thus in algebraic geometry, the metaphor of thinking about a community of "organisms" as itself being an "organism" is not just a metaphor but a rigorous and quite useful fact. The other focus in this project is birational geometry, focusing here on resolution of singularities. Resolution of singularities is a fundamental procedure where "bad" points of an algebraic variety are removed and replaced by "good" points. This project includes research opportunities for undergraduate and graduate students.In more detail, the PI will continue studying problems in birational geometry, focusing on resolution of singularities, semistable reduction, and the geometry of stack theoretic birational modifications. The PI and collaborators will build on recently completed work to functorially resolve singularities of proper families of varieties; to study the geometry of weighted blowings up and more general stack-theoretic procedures; and to study subtle phenomena in positive characteristics. In addition, the PI will continue to study moduli spaces. The main foci are Moduli and arithmetic of subvarieties of families of abelian varieties, aiming to extend recent non-degeneracy and uniformity results of rational points on curves to symmetric squares of curves and related constructions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究领域在于代数几何,数学的分支致力于几何形状称为代数簇,由多项式方程定义。代数几何在编码、工业控制、计算和理论物理学中有着重要的应用,物理学家认为代数簇是我们宇宙精细结构的一部分。这个项目的一个重点是模理论,它研究一个显着的现象,其中所有相同类型的代数簇的集合通常表现为一个代数簇本身,称为模空间。因此,在代数几何学中,把一个“有机体”群落看作是一个“有机体”的隐喻不仅是一个隐喻,而且是一个严格而非常有用的事实。这个项目的另一个重点是双有理几何,这里侧重于奇点的解决。奇点的解析是一个基本的过程,其中代数簇的“坏”点被删除并被“好”点取代。该项目包括本科生和研究生的研究机会。更详细地说,PI将继续研究双有理几何中的问题,重点是奇异点的解决,半稳定的减少,以及堆栈理论双有理修改的几何。PI和合作者将在最近完成的工作的基础上,泛函地解决适当的品种族的奇点;研究加权爆破的几何和更一般的堆栈理论程序;并研究正特征中的微妙现象。此外,PI将继续研究模空间。主要研究方向是阿贝尔簇族的子簇的模和算术,旨在将最近关于曲线上有理点的非退化性和均匀性的结果扩展到曲线的对称平方和相关构造。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Abramovich其他文献

On the top-weight rational cohomology of A g
关于 A g 的顶权有理上同调
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. A. B. Randt;J. U. B. Ruce;M. E. C. Han;M. A. M. Elo;G. W. M. Oreland;C. O. W. Olfe;Mladen Bestvina;Mark Gross;Dan Abramovich;Arend Bayer;Mark Behrens;Jim Bryan;Mike Freedman;Colin Rourke;Roman Sauer
  • 通讯作者:
    Roman Sauer
Uniformity of stably integral points on elliptic curves
  • DOI:
    10.1007/s002220050121
  • 发表时间:
    1997-01-17
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Dan Abramovich
  • 通讯作者:
    Dan Abramovich
Lang maps and Harris’s conjecture
  • DOI:
    10.1007/bf02760923
  • 发表时间:
    1997-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Dan Abramovich
  • 通讯作者:
    Dan Abramovich

Dan Abramovich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Abramovich', 18)}}的其他基金

Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
  • 批准号:
    1937636
  • 财政年份:
    2019
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Studies in Moduli Theory and Birational Geometry
模理论与双有理几何研究
  • 批准号:
    1759514
  • 财政年份:
    2018
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Studies in Moduli Theory and Birational Geometry
模理论与双有理几何研究
  • 批准号:
    1500525
  • 财政年份:
    2015
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry Northeastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
  • 批准号:
    1360792
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Studies in moduli theory and birational geometry
模量理论和双有理几何研究
  • 批准号:
    1162367
  • 财政年份:
    2012
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGNES. Algebraic Geometry NorthEastern Series
合作研究:AGNES。
  • 批准号:
    1064229
  • 财政年份:
    2011
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Studies in moduli theory and birational geometry
模量理论和双有理几何研究
  • 批准号:
    0901278
  • 财政年份:
    2009
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Aspects of Moduli Theory: workshop and conference at the de Giorgi center, June 2008
模数理论的各个方面:de Giorgi 中心的研讨会和会议,2008 年 6 月
  • 批准号:
    0752993
  • 财政年份:
    2008
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Studies in moduli theory and birational geometry
模量理论和双有理几何研究
  • 批准号:
    0603284
  • 财政年份:
    2006
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Studies in Moduli Theory and Birational Geometry
模理论与双有理几何研究
  • 批准号:
    0335501
  • 财政年份:
    2003
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
  • 批准号:
    11271070
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
  • 批准号:
    23K03067
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Geometric representation theory and moduli spaces
会议:几何表示理论和模空间
  • 批准号:
    2328483
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
  • 批准号:
    2302394
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Quantized Lagrangian submanifolds of moduli spaces and representation theory
模空间的量化拉格朗日子流形和表示理论
  • 批准号:
    2302624
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
  • 批准号:
    22H00094
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Moduli Spaces of Higgs Bundles, Gauge Theory, and Related Topics
希格斯丛集的模空间、规范理论及相关主题
  • 批准号:
    2204346
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Integral transforms and moduli theory
积分变换和模理论
  • 批准号:
    FT210100405
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
  • 项目类别:
    ARC Future Fellowships
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
  • 批准号:
    2201314
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
CAREER:Combinatorial Intersection Theory on Moduli Spaces of Curves
职业:曲线模空间的组合交集理论
  • 批准号:
    2137060
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
  • 批准号:
    2100962
  • 财政年份:
    2021
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了