Modular Forms, Combinatorial Generating Functions, and Hypergeometric Functions

模形式、组合生成函数和超几何函数

基本信息

  • 批准号:
    2101906
  • 负责人:
  • 金额:
    $ 21.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The branch of mathematics called number theory evolved out of the study of integers and integer-valued functions. One of the beautiful things about number theory is that seemingly simple questions, when deeply investigated, can blossom into rich and intricate discoveries. The PI will investigate a number of problems that relate to modular and automorphic forms, which have played a central role in many major problems in number theory over the last century. Through this research, the PI will mentor undergraduate research students, engage PhD students in research, hold a regional number theory conference for graduate students, utilize and develop practices to build inclusivity in research mentoring and classroom teaching, and continue collaborations with numerous professional women researchers.The PI will investigate relationships between modular forms, harmonic Maass forms, mock modular forms, and quantum modular forms, which is a major area of study in modular forms theory. Historically, examples arising from combinatorial generating functions have been a rich source of varied types of modularity behavior, and it would be of value to determine a general theory for the modularity of combinatorial generating functions. The PI will engage in projects involving modularity of various combinatorial rank generating functions, as well as inequalities for combinatorial functions related to partition theory and their moments in order to better understand the role of combinatorial generating functions in modular forms theory. The PI will also engage in research on hypergeometric functions of various types, which are an important component of many areas of mathematics and have applications to algebra, analysis, arithmetic geometry, combinatorics, mathematical physics, and number theory. Projects of the PI in this area include Ramanujan-Sato type series and supercongruences related to arithmetic triangle groups, generalized van Hamme supercongruence conjectures, and a p-adic theory of hypergeometric functions which may yield explicit descriptions of p-adic aspects of hypergeometric L-functions. The projects in the theory of hypergeometric series are designed to strengthen our understanding of the role of hypergeometric functions in the larger modular and automorphic forms landscape.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学的分支数论是从整数和整数值函数的研究中发展出来的。 数论的美妙之处之一就是,看似简单的问题,经过深入研究,可以开花成为丰富而复杂的发现。 PI将研究一些与模和自守形式有关的问题,这些问题在上世纪数论中的许多重大问题中发挥了核心作用。 通过这项研究,PI将指导本科研究生,让博士生参与研究,为研究生举办区域数论会议,利用和发展实践来建立研究指导和课堂教学的包容性,并继续与众多专业女性研究人员合作。PI将调查模形式,调和马斯形式,模拟模形式和量子模形式之间的关系,这是模形式理论的一个主要研究领域。从历史上看,从组合生成函数产生的例子已经是各种类型的模块性行为的丰富来源,它将是有价值的,以确定一个一般的理论组合生成函数的模块性。PI将参与涉及各种组合秩生成函数的模块化的项目,以及与划分理论及其矩相关的组合函数的不等式,以便更好地理解组合生成函数在模块化形式理论中的作用。PI还将从事各种类型的超几何函数的研究,这些函数是许多数学领域的重要组成部分,并应用于代数,分析,算术几何,组合数学,数学物理和数论。项目的PI在这方面包括Ramanujan-Sato型系列和超同余关系的算术三角形群,广义货车Hamme超同余关系,和一个p-adic理论的超几何函数,可能会产生明确的描述p-adic方面的超几何L-函数。 超几何级数理论的项目旨在加强我们对超几何函数在更大的模块化和自守形式景观中的作用的理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Alder-Type Partition Inequalities
广义桤木型划分不等式
  • DOI:
    10.37236/11606
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Armstrong, Liam;Ducasse, Bryan;Meyer, Thomas;Swisher, Holly
  • 通讯作者:
    Swisher, Holly
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Holly Swisher其他文献

A generalization of Franklin’s partition identity and a Beck-type companion identity
  • DOI:
    10.1007/s11139-025-01121-7
  • 发表时间:
    2025-07-16
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Gabriel Gray;David Hovey;Brandt Kronholm;Emily Payne;Holly Swisher;Ren Watson
  • 通讯作者:
    Ren Watson
Extension of a proof of the Ramanujan congruences for multipartitions
  • DOI:
    10.1007/s11139-016-9817-x
  • 发表时间:
    2016-09-06
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Oleg Lazarev;Matthew S. Mizuhara;Benjamin Reid;Holly Swisher
  • 通讯作者:
    Holly Swisher
A proof of some conjectures of Mao on partition rank inequalities
  • DOI:
    10.1007/s11139-016-9789-x
  • 发表时间:
    2016-07-25
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Ethan Alwaise;Elena Iannuzzi;Holly Swisher
  • 通讯作者:
    Holly Swisher

Holly Swisher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Holly Swisher', 18)}}的其他基金

REU Site: Mathematics and Theoretical Computer Science at Oregon State University
REU 网站:俄勒冈州立大学数学和理论计算机科学
  • 批准号:
    1757995
  • 财政年份:
    2018
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Oregon Number Theory Days
合作研究:俄勒冈数论日
  • 批准号:
    1719617
  • 财政年份:
    2017
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Computational Representation Theory in Number Theory
数论中的计算表示论
  • 批准号:
    1513890
  • 财政年份:
    2015
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Research in Mathematics and Theoretical Computer Science
REU 网站:数学和理论计算机科学本科研究
  • 批准号:
    1359173
  • 财政年份:
    2014
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Automorphic Forms Workshop
自守形式研讨会
  • 批准号:
    1069292
  • 财政年份:
    2011
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
  • 批准号:
    2401152
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347096
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
  • 批准号:
    2349888
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347095
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347097
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
  • 批准号:
    2401353
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
  • 批准号:
    2401548
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
  • 批准号:
    2401444
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
  • 批准号:
    2302208
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了