Molecules in 2D h-BN
2D h-BN 中的分子
基本信息
- 批准号:2102643
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professor Michael Arnold and his research group at the University of Wisconsin will investigate the creation of ultrathin, sheet-like materials that are only one atom thick. The materials will be created from an electrical insulator, containing the elements boron and nitrogen. Embedded and bonded within the sheets will be ultrasmall islands of carbon atoms. These islands will be as small as molecules, and, like normal molecules, these islands will have an exactly defined number of atoms and precisely defined shapes. The carbon islands will also mimic the electrical and optical properties of normal molecules but be seamlessly integrated and lie flat within the boron-nitrogen sheets. Materials like these, with this precision, have never been created previously. This project will address the challenge of synthesizing these materials and develop the fundamental understanding needed to create them. Atomically well-defined structures like these have the potential to be employed as next-generation filter-like materials with record-efficiency because of the materialsˈ extreme thinness and thus promise to impact applications of societal importance pertaining to the purification of air and water. The resulting materials moreover promise to possess properties needed for next-generation electronics and quantum electronics technologies, important for national defense and prosperity. The impact of the supported research and science, and of research and science in general, will be communicated to the public by the researchers through planned outreach activities, for example via the University of Wisconsin’s Badger Talks initiative. TECHNICAL SUMMARY Molecules are the ultimate nanostructures. Their size, shape, and composition can be nearly infinitely tuned, and exact replicas can be created on a massively parallel scale. Moleculesˈ physical, electrical, and optical properties can be vastly tailored – to realize insulating, semiconducting, and metallic behaviors and manipulate photons from the ultraviolet to the infrared. In this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, we will create and explore analogs to molecules – specifically analogs to polycyclic aromatic hydrocarbon (PAH) molecules – that are not free but covalently embedded, in-plane, in crystalline monolayer sheets of insulating hexagonal boron nitride (h-BN). While nanoscale domains of carbon have been fabricated from the top-down in h-BN previously, these domains have been relatively large and/or disordered in shape and size, and none have been defined with molecular precision. Here, atomically precise carbon domains will be realized, from the bottom-up, by using PAH molecules themselves to create them. The embedded PAHs will offer the exactness and tunablility of conventional molecules but in a planar, immobilized, and atomically thin form. Molecularly embedded h-BN sheets promise phenomena not previously possible – including exceptionally thin materials with exact pores of widely tunable size and shape (through selective carbon etching) for molecular sequencing or sieving applications, h-BN sheets (conventionally insulating) with functional semiconducting dopants, and immobilized single molecules that are individually addressable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的非技术摘要,在材料研究部的固态和材料化学计划的支持下,威斯康星大学的迈克尔·阿诺德教授及其研究小组将调查创建仅是一种原子厚的超薄材料,类似薄片的材料。这些材料将是由含有硼和氮元件的电绝缘体创建的。这些岛屿内嵌入并粘合在床单中,将是碳原子的超大岛。这些岛屿将与分子一样小,并且像普通分子一样,这些岛屿将具有精确定义的原子和精确定义的形状。碳岛还将模仿正常分子的电气和光学特性,但无缝整合并平坦地位于硼氮片内。这样的材料以这种精度从未创建过。该项目将应对综合这些材料的挑战,并发展创建它们所需的基本理解。由于材料极度薄度,因此原子上定义明确的结构具有以创效率的下一代滤光片材料的潜力,因此有望影响与空气和水的纯化有关的社会重要性的应用。此外,由此产生的材料承诺对下一代电子和量子电子技术所需的潜在特性,这对于国防和繁荣至关重要。研究人员将通过计划的外展活动向公众传达支持的研究和科学以及一般研究与科学的影响,例如,通过威斯康星大学的Badger Talks Initiative。技术摘要分子是最终的纳米结构。它们的大小,形状和成分几乎可以无限地调节,并且可以以大量平行的比例创建精确的副本。分子可以量身定制的物理,电气和光学特性 - 实现绝缘,半导体和金属行为,并从紫外线到红外线操纵照片。在该项目中,在材料研究划分的固态和材料化学计划的支持下,我们将创建和探索类似于分子的类似物 - 特别是对多环芳族烃(PAH)分子的类似物,这些分子不是免费的,但在晶体层中,无透明的单层毛毛毛。虽然先前在H-BN的自上而上制造了碳的纳米级结构域,但这些结构域的形状和大小相对较大和/或无序,没有分子精度来定义。在这里,通过使用PAH分子本身来创建原子上精确的碳域。嵌入的PAHS将提供常规分子的精确性和可调节性,但在平面,固定和原子上薄的形式。分子嵌入的H-BN表可以承诺以前无法实现现象 - 包括具有广泛可调的尺寸和形状的精确孔(通过选择性碳蚀刻),用于分子测序或筛分应用,H-BN表(常规上绝缘)具有功能性的半导体和不合时宜的单分解剂,并且是分子的单独构成,这些型号和不可或缺的型物质是构成的。使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是宝贵的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Vacuum Chemical Vapor Deposition of Monolayer Hexagonal Boron Nitride on Ge(001) from Borazine
环硼嗪Ge(001)上高真空化学气相沉积单层六方氮化硼
- DOI:10.1149/11102.0097ecst
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Su, Katherine Anna;Li, Songying;Arnold, Michael Scott
- 通讯作者:Arnold, Michael Scott
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Arnold其他文献
Nano-scale Turing Patterns in Electrodeposited Hybrid Thin Films
电镀混合薄膜中的纳米级图灵图案
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Matthew White;Lina Sun;He Sun;Yuta Ogawa;Syu Uno;Yu Jiang;Michael Arnold;Bin Du;Benjamin Himberg;Tsukasa Yoshida - 通讯作者:
Tsukasa Yoshida
Simultaneous ferromagnetic and semiconductor–metal transition in EuO
- DOI:
10.1016/j.physc.2007.03.240 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:
- 作者:
Michael Arnold;Johann Kroha - 通讯作者:
Johann Kroha
The Day Experience Method: A Resource Kit
当天体验法:资源包
- DOI:
10.4324/9780203964347 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Matthew Riddle;Michael Arnold - 通讯作者:
Michael Arnold
Competition with an information clearinghouse and asymmetric firms: Why more than two firms compete (or not) for shoppers
- DOI:
10.1016/j.geb.2020.04.002 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:
- 作者:
Michael Arnold;Lan Zhang - 通讯作者:
Lan Zhang
Michael Arnold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Arnold', 18)}}的其他基金
I-Corps: Novel Aligned Carbon Nanotube Arrays for Radiofrequency Technologies
I-Corps:用于射频技术的新型对齐碳纳米管阵列
- 批准号:
2313213 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Directed Self-Assembly of Block Copolymer Thin Films into Useful Organized Patterns for Microelectronics and Nanofabrication.
将嵌段共聚物薄膜定向自组装成微电子和纳米制造有用的组织图案。
- 批准号:
2011254 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Engineering Atomically Precise Nanochannels Using Layered 2D Sheets to Enable Chemical Separation Membranes with Exceptional Permeance and Size-Selectivity
使用分层二维片设计原子级精确的纳米通道,使化学分离膜具有卓越的渗透性和尺寸选择性
- 批准号:
1705503 - 财政年份:2017
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Manufacturing Aligned Arrays of Semiconducting Carbon Nanotubes for Faster and More Energy Efficient Next-Generation Electronics
制造半导体碳纳米管对齐阵列,以实现更快、更节能的下一代电子产品
- 批准号:
1462771 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
CAREER: Overcoming Heterogeneity: Ultra-monodisperse Semiconducting Carbon with Parts per Million and Billion Polydispersity
职业:克服异质性:具有百万分之一和十亿分度多分散性的超单分散半导体碳
- 批准号:
1350537 - 财政年份:2014
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Fabrication of Large-Area and Large-Bandgap Semiconducting Graphene Materials
大面积、大带隙半导体石墨烯材料的制备
- 批准号:
1129802 - 财政年份:2011
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Proposal: Genetic architecture of reproductive isolation and introgression in experimental and natural hybrid zones in Louisiana Irises
合作提案:路易斯安那鸢尾实验区和自然杂交区生殖隔离和基因渗入的遗传结构
- 批准号:
0949479 - 财政年份:2010
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Functional Atomic Membranes for High-Performance Organic Photovoltaic Materials
用于高性能有机光伏材料的功能原子膜
- 批准号:
1033346 - 财政年份:2010
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
RAPID: Evolutionary Effects of the Deepwater Horizon Oil Spill on Coastal Louisiana Iris Populations
RAPID:深水地平线漏油事件对路易斯安那州沿海鸢尾种群的进化影响
- 批准号:
1049757 - 财政年份:2010
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似国自然基金
2D准金属有机骨架的可控制备及提升光热催化CO2加氢制甲醇性能的作用机制
- 批准号:22368003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
2D CuS/LDHs范德华异质结的构建及其LSPR增强电催化水分解制氧研究
- 批准号:12364032
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
自支撑极紫外2D广义叉形光栅的涡旋生成、色散及高阶衍射抑制特性
- 批准号:62375281
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
2D范德华ReSe2铁电性研究及其忆阻器亚矫顽电压调控多功能实现
- 批准号:62304064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
2D/3D混合维度钙钛矿界面稳定性及间隔阳离子迁移机制研究
- 批准号:62304068
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
2Dマテリアルの転送機構の微視的機構を解明するin-situ TEM観察
原位 TEM 观察阐明二维材料转移的微观机制
- 批准号:
24K07286 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
データ同化技法で拓く適応照射のための2D-X線透視像からの実時間的3D体内動態の推定
使用数据同化技术从 2D-X 射线透视图像实时估计 3D 身体动力学以进行自适应照射
- 批准号:
24K10778 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bioinspired 2D nanocatalysts for inorganic nitrogen cycle
用于无机氮循环的仿生二维纳米催化剂
- 批准号:
DE240101045 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Discovery Early Career Researcher Award
2Dフローサイトメトリー技術の確立と子宮頚がん細胞診への応用
二维流式细胞术技术的建立及其在宫颈癌细胞诊断中的应用
- 批准号:
24K03302 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021789/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant