Functional Atomic Membranes for High-Performance Organic Photovoltaic Materials
用于高性能有机光伏材料的功能原子膜
基本信息
- 批准号:1033346
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1033346ArnoldIntellectual MeritOrganic photovoltaic (OPV) devices based on organic semiconductors are attractive for next-generation solar cells because of their strong optical absorptivity, economical fabrication, and tunable optoelectronic properties. However, despite these advantages, OPVs have not found widespread use. One limitation on OPV device performance is the susceptibility of OPVs to photo-oxidation effects, which limits their practical lifetime. Another limitation is that the power conversion efficiency of OPVs is still several times lower than that of single-junction inorganic photovoltaic devices. The relatively poor performance of OPVs is due to the inefficient charge and energy transport mechanisms in organic semiconducting materials. In this research, the incorporation of atomically-thin graphene membranes at the active interfaces of OPV devices is proposed to increase the stability of OPV devices and improve their performance by simultaneously adding multiple functionalities. Specifically, it is hypothesized that these two-dimensional, crystalline, graphene membranes will impart four unique functionalities to OPV devices. First, they will act as impermeable diffusion barriers, excluding oxygen, water vapor, and migrating ions from the active layers of OPVs, thereby enhancing organic semiconductor stability and lifetime. Second, the grapheme membranes will template the quasi-epitaxial crystalline growth of organic semiconductors, thereby improving charge and energy transport and device performance. Third, the grapheme membrane has the potential to modulate charge injection and extraction at the organic/organic and organic/electrode interfaces, to enable an additional device performance tuning capability. Finally, it is proposed that the grapheme membranes will Increase the durability of OPVs on flexible substrates. Specifically, graphene monolayer/indium tin oxide (ITO) hybrid transparent conductors are proposed in which cracks in ITO are ?healed? by grapheme monolayer bridges.The research plan has two major objectives. The first objective is to develop an understanding of how to best integrate, grow, and deposit atomically-thin, crystalline graphene or boron-nitride membranes at the active interfaces of OPVs. The second objective is to evaluate the properties of these membranes at interfaces ? specifically for their behavior as diffusion barriers, their effect on molecular templating, their modulation of charge and energy transport, and their applicability as hybrid transparent conductors. Successful completion of the proposed work may result in higher efficiency OPV devices with extended lifetime; an improved understanding of diffusion through atomic membranes; new strategies for templating organic crystalline growth; and new understanding of charge and energy transport mechanisms across ideal interfaces. Broader Impacts The proposed education and outreach plan includes student training, course development, and public outreach centered on the proposed research and solar photovoltaics. The education plan will train one graduate student and involve three undergraduate students in the proposed research. Research on transport in atomic membranes will be incorporated into graduate level electronic materials course, and an undergraduate transport phenomena course. To engage the public, the PI will work with the UW-Madison Energy Institute to develop web-based educational modules on solar photovoltaics. Furthermore, a public lecture developed by the PI titled "Why doesn't my electricity come from the sun? Future materials for solar photovoltaic solar cells" will be enhanced and then aired on a local Public Broadcasting System (PBS) program.
基于有机半导体的有机光伏(OPV)器件以其强大的光吸收能力、经济的制造工艺和可调的光电性能而成为下一代太阳能电池的研究热点。然而,尽管有这些优点,口服脊髓灰质炎疫苗还没有得到广泛的使用。OPV器件性能的一个限制是OPV对光氧化效应的敏感性,这限制了它们的实际寿命。另一个限制是,OPV的电力转换效率仍然比单结无机光伏器件低好几倍。有机半导体材料中电荷和能量传输机制的低效是导致有机半导体材料性能相对较差的原因。在本研究中,提出在光伏器件的有源界面引入原子薄的石墨烯薄膜,以增加光伏器件的稳定性,同时通过增加多种功能来改善其性能。具体地说,人们假设这些二维、结晶的石墨烯薄膜将赋予OPV设备四种独特的功能。首先,它们将作为不透水的扩散屏障,将氧气、水蒸气和来自OPV活性层的迁移离子排除在外,从而提高有机半导体的稳定性和寿命。其次,石墨膜将为有机半导体的准外延晶体生长提供模板,从而改善电荷和能量传输以及器件性能。第三,石墨膜有可能调节有机/有机和有机/电极界面的电荷注入和提取,从而实现额外的器件性能调节能力。最后,提出了石墨膜将提高柔性衬底上OPVs的耐久性。具体地说,提出了石墨烯/氧化铟锡(ITO)杂化透明导体,修复了ITO中的裂纹。通过字素单层桥,研究计划有两个主要目标。第一个目标是了解如何在OPV的活性界面上最好地集成、生长和沉积原子薄的结晶石墨烯或氮化硼薄膜。第二个目标是评估这些膜在界面上的性能?特别是它们作为扩散屏障的行为,它们对分子模板的影响,它们对电荷和能量传输的调制,以及它们作为混合透明导体的适用性。这项拟议工作的成功完成可能会带来效率更高、寿命更长的OPV器件;更好地理解通过原子膜的扩散;为有机晶体生长提供模板的新策略;以及对理想界面上电荷和能量传输机制的新理解。更广泛的影响拟议的教育和推广计划包括以拟议的研究和太阳能光伏为中心的学生培训、课程开发和公众推广。该教育计划将培养一名研究生,并让三名本科生参与拟议的研究。原子膜中输运的研究将被纳入研究生水平的电子材料课程和本科生的输运现象课程。为了让公众参与进来,PI将与华盛顿大学麦迪逊能源研究所合作,开发基于网络的太阳能光伏教育模块。此外,由PI开发的题为《为什么我的电不是来自太阳的?太阳能光伏太阳能电池的未来材料》的公开讲座将得到加强,然后在当地的公共广播系统(PBS)节目中播出。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Arnold其他文献
Nano-scale Turing Patterns in Electrodeposited Hybrid Thin Films
电镀混合薄膜中的纳米级图灵图案
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Matthew White;Lina Sun;He Sun;Yuta Ogawa;Syu Uno;Yu Jiang;Michael Arnold;Bin Du;Benjamin Himberg;Tsukasa Yoshida - 通讯作者:
Tsukasa Yoshida
Simultaneous ferromagnetic and semiconductor–metal transition in EuO
- DOI:
10.1016/j.physc.2007.03.240 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:
- 作者:
Michael Arnold;Johann Kroha - 通讯作者:
Johann Kroha
Leisure and Death: An Anthropological Tour of Risk, Death, and Dying.
休闲与死亡:风险、死亡和垂死的人类学之旅。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jonathan Skinner and Adam Kaul (eds.) Maribeth Erb;Keith Egan;Kathleen M. Adams;Adam Kaul;Shingo Iitaka;Cyril Schafer;Ruth McManus;Ray Casserly;Rachel A. Horner Brackett;Tamara Kohn;Michael Arnold;Martin Gibbs;James Meese;Bjorn Nansen;Stavro - 通讯作者:
Stavro
Advancing the Use of Laparoscopy in Trauma: Repair of Intraperitoneal Bladder Injuries
推进腹腔镜在创伤中的应用:腹膜内膀胱损伤的修复
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael Arnold;Caroline Lu;Bradley W. Thomas;G. Sachdev;Kyle W. Cunningham;R. Vaio;B. Heniford;R. Sing - 通讯作者:
R. Sing
The impact of abnormal BMI on surgical complications after pediatric colorectal surgery.
BMI异常对小儿结直肠手术后手术并发症的影响。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.4
- 作者:
Angela M. Kao;Michael Arnold;T. Prasad;A. Schulman - 通讯作者:
A. Schulman
Michael Arnold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Arnold', 18)}}的其他基金
I-Corps: Novel Aligned Carbon Nanotube Arrays for Radiofrequency Technologies
I-Corps:用于射频技术的新型对齐碳纳米管阵列
- 批准号:
2313213 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Directed Self-Assembly of Block Copolymer Thin Films into Useful Organized Patterns for Microelectronics and Nanofabrication.
将嵌段共聚物薄膜定向自组装成微电子和纳米制造有用的组织图案。
- 批准号:
2011254 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Engineering Atomically Precise Nanochannels Using Layered 2D Sheets to Enable Chemical Separation Membranes with Exceptional Permeance and Size-Selectivity
使用分层二维片设计原子级精确的纳米通道,使化学分离膜具有卓越的渗透性和尺寸选择性
- 批准号:
1705503 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Manufacturing Aligned Arrays of Semiconducting Carbon Nanotubes for Faster and More Energy Efficient Next-Generation Electronics
制造半导体碳纳米管对齐阵列,以实现更快、更节能的下一代电子产品
- 批准号:
1462771 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Overcoming Heterogeneity: Ultra-monodisperse Semiconducting Carbon with Parts per Million and Billion Polydispersity
职业:克服异质性:具有百万分之一和十亿分度多分散性的超单分散半导体碳
- 批准号:
1350537 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Fabrication of Large-Area and Large-Bandgap Semiconducting Graphene Materials
大面积、大带隙半导体石墨烯材料的制备
- 批准号:
1129802 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Proposal: Genetic architecture of reproductive isolation and introgression in experimental and natural hybrid zones in Louisiana Irises
合作提案:路易斯安那鸢尾实验区和自然杂交区生殖隔离和基因渗入的遗传结构
- 批准号:
0949479 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RAPID: Evolutionary Effects of the Deepwater Horizon Oil Spill on Coastal Louisiana Iris Populations
RAPID:深水地平线漏油事件对路易斯安那州沿海鸢尾种群的进化影响
- 批准号:
1049757 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Local Atomic-level Thermodynamic Probe for Nanoscience of 2D Membranes: Synthesis, NMR and Nanocalorimetry Study
用于二维膜纳米科学的局域原子级热力学探针:合成、核磁共振和纳米量热研究
- 批准号:
1809573 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Understanding biological membranes in atomic detail
了解生物膜的原子细节
- 批准号:
DP160103414 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Self-organization of hydrophobin membranes formation at flattened-top domical water drops: a structural and mechanistic study using Atomic Force Microscope
平顶圆顶水滴疏水蛋白膜形成的自组织:使用原子力显微镜的结构和机制研究
- 批准号:
26600005 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
- 批准号:
1464616 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Toward Atomic Resolution of Membranes and Membrane-Associated Machines
膜和膜相关机器的原子分辨率
- 批准号:
9117230 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Metal catalyzed synthesis of graphene for the preparation of membranes with highest perfection at the atomic scale
金属催化合成石墨烯用于制备原子尺度上最完美的膜
- 批准号:
242803365 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Priority Programmes
Toward Atomic Resolution of Membranes and Membrane-Associated Machines
膜和膜相关机器的原子分辨率
- 批准号:
8572065 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Connectivity and ION Conductions in Fuel Cell Membranes Probed by Tunneling Atomic Force Microscopy
通过隧道原子力显微镜探测燃料电池膜中的连通性和离子传导
- 批准号:
1213950 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
- 批准号:
1054406 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Structural studies of atomic interactions in membranes: bridging the gap between physics and membrane biology
膜中原子相互作用的结构研究:弥合物理学和膜生物学之间的差距
- 批准号:
EP/J002615/1 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Fellowship