Engineering Atomically Precise Nanochannels Using Layered 2D Sheets to Enable Chemical Separation Membranes with Exceptional Permeance and Size-Selectivity

使用分层二维片设计原子级精确的纳米通道,使化学分离膜具有卓越的渗透性和尺寸选择性

基本信息

  • 批准号:
    1705503
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The separation of air into its components, oxygen, nitrogen, carbon dioxide, water vapor, and other trace gases such as helium, is a billion dollar industry. Examples include: use of purified nitrogen in high performance tires and infusion into specialty coffee; use of purified oxygen for healthcare and the launch space shuttles; use of helium for balloons. Separation of any mixture requires both energy and a strategy to isolate one component. Size selective membranes provide one such strategy, allowing molecules to permeate through internal channels at rates that are dictated by their ability to fit within a membrane channel, their diffusivity, and the strength by which they interact with the surface. Decreasing this surface interaction increases permeation, which translates to an increased production rate at lower energy consumption. One candidate for frictionless transport are membrane channels comprised of carbon atoms, such as cylindrical carbon nanotubes or stacked planar graphene sheets. As weak surface interactions provide little impediment to flow, the permeation of water through carbon nanotubes has been experimentally shown to be 1000 times greater than that predicted from classical models. Yet, homogenous channels of closely packed carbon nanotubes have been difficult to synthesize in large quantities. Propped graphene sheets show more promise for large scale synthesis, but are currently derived from graphite via a highly oxidative delamination process, which imparts significant residual oxygen atoms that invalidate frictionless transport. This project will utilize a bottoms-up nonoxidative approach to create propped graphene membranes with controlled channels optimized for size selective transport of small molecules, such as oxygen, nitrogen, hydrogen, helium, and water.This project will use molecular spacers as proppants to synthesize controlled nanochannels between pristine unoxidized parallel graphene sheets. Robust chemistries will be developed for precisely fabricating nanochannels with sub-nanometer gaps that range from 2-8 Angstroms to impart size selectivity. Candidate spacer molecules include para substituted benzene derivatives, functional groups grafted via [2+2] cycloaddition, and non-covalently adsorbed planar and non-planar aromatic hydrocarbons. Both isolated bilayer channels and multilayered laminate membranes will be fabricated. The isolated channels will afford fundamental surface science measurements of structure and properties whereas the multilayered membranes will enable macroscopic measurements of transport to validate the theoretical prediction of frictionless, ultrahigh permeance transport. Microstructural characterization data, in conjunction with transport measurements, will guide design of increasingly effective membrane materials. Both graduate and undergraduate students will perform laboratory research for this project, with an effort to target underrepresented groups. The research will inform interactive lessons targeted at high school level students, accompanied by dissemination of training videos to teachers.
将空气分离成氧气、氮气、二氧化碳、水蒸气和其他微量气体(如氦),是一个价值数十亿美元的行业。例如:在高性能轮胎和特种咖啡中使用纯氮;在医疗保健和发射航天飞机中使用纯氧;在气球上使用氦。任何混合物的分离都需要能量和分离一种组分的策略。尺寸选择膜提供了一种这样的策略,允许分子以由它们在膜通道内的适应能力、它们的扩散性以及它们与表面相互作用的强度所决定的速率通过内部通道。减少这种表面相互作用会增加渗透率,从而在较低的能源消耗下提高生产率。无摩擦传输的一个候选方案是由碳原子组成的膜通道,例如圆柱形碳纳米管或堆叠的平面石墨烯薄片。由于弱表面相互作用对流动几乎没有阻碍作用,实验表明水通过碳纳米管的渗透率比经典模型预测的要大1000倍。然而,紧密堆积的碳纳米管的均质通道很难大量合成。支撑石墨烯薄片显示出更多的大规模合成前景,但目前是通过高度氧化的分层过程从石墨中提取的,该过程提供了大量的残余氧原子,使无摩擦传输失效。该项目将利用自下而上的非氧化方法来创建具有可控通道的支撑石墨烯膜,该膜具有针对氧、氮、氢、氦和水等小分子的尺寸选择性传输而优化的可控通道。该项目将使用分子间隔物作为支撑剂来合成原始未氧化的平行石墨烯薄片之间的可控纳米通道。将开发强大的化学方法来精确地制造具有2-8埃的亚纳米间隙的纳米通道,以提供尺寸选择性。候选间隔基分子包括对位取代苯衍生物,通过[2+2]环加成反应接枝的官能团,以及非共价吸附的平面和非平面芳香烃。分离的双层通道和多层叠层膜都将被制造出来。孤立的通道将提供结构和性能的基本表面科学测量,而多层膜将使传输的宏观测量能够验证无摩擦、超高渗透传输的理论预测。微结构表征数据,结合传输测量,将指导日益有效的膜材料的设计。研究生和本科生都将为这个项目进行实验室研究,努力瞄准代表性不足的群体。这项研究将为针对高中生的互动课程提供信息,同时向教师传播培训视频。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Invariance of Water Permeance through Size-Differentiated Graphene Oxide Laminates
  • DOI:
    10.1021/acsnano.8b02015
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Saraswat, Vivek;Jacobberger, Robert M.;Arnold, Michael S.
  • 通讯作者:
    Arnold, Michael S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Arnold其他文献

Nano-scale Turing Patterns in Electrodeposited Hybrid Thin Films
电镀混合薄膜中的纳米级图灵图案
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew White;Lina Sun;He Sun;Yuta Ogawa;Syu Uno;Yu Jiang;Michael Arnold;Bin Du;Benjamin Himberg;Tsukasa Yoshida
  • 通讯作者:
    Tsukasa Yoshida
Simultaneous ferromagnetic and semiconductor–metal transition in EuO
  • DOI:
    10.1016/j.physc.2007.03.240
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Arnold;Johann Kroha
  • 通讯作者:
    Johann Kroha
Leisure and Death: An Anthropological Tour of Risk, Death, and Dying.
休闲与死亡:风险、死亡和垂死的人类学之旅。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Skinner and Adam Kaul (eds.) Maribeth Erb;Keith Egan;Kathleen M. Adams;Adam Kaul;Shingo Iitaka;Cyril Schafer;Ruth McManus;Ray Casserly;Rachel A. Horner Brackett;Tamara Kohn;Michael Arnold;Martin Gibbs;James Meese;Bjorn Nansen;Stavro
  • 通讯作者:
    Stavro
Advancing the Use of Laparoscopy in Trauma: Repair of Intraperitoneal Bladder Injuries
推进腹腔镜在创伤中的应用:腹膜内膀胱损伤的修复
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Arnold;Caroline Lu;Bradley W. Thomas;G. Sachdev;Kyle W. Cunningham;R. Vaio;B. Heniford;R. Sing
  • 通讯作者:
    R. Sing
The impact of abnormal BMI on surgical complications after pediatric colorectal surgery.
BMI异常对小儿结直肠手术后手术并发症的影响。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Angela M. Kao;Michael Arnold;T. Prasad;A. Schulman
  • 通讯作者:
    A. Schulman

Michael Arnold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Arnold', 18)}}的其他基金

I-Corps: Novel Aligned Carbon Nanotube Arrays for Radiofrequency Technologies
I-Corps:用于射频技术的新型对齐碳纳米管阵列
  • 批准号:
    2313213
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Molecules in 2D h-BN
2D h-BN 中的分子
  • 批准号:
    2102643
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Directed Self-Assembly of Block Copolymer Thin Films into Useful Organized Patterns for Microelectronics and Nanofabrication.
将嵌段共聚物薄膜定向自组装成微电子和纳米制造有用的组织图案。
  • 批准号:
    2011254
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SNM: Carbon Nanotubes Wafers
SNM:碳纳米管晶圆
  • 批准号:
    1727523
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Manufacturing Aligned Arrays of Semiconducting Carbon Nanotubes for Faster and More Energy Efficient Next-Generation Electronics
制造半导体碳纳米管对齐阵列,以实现更快、更节能的下一代电子产品
  • 批准号:
    1462771
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Overcoming Heterogeneity: Ultra-monodisperse Semiconducting Carbon with Parts per Million and Billion Polydispersity
职业:克服异质性:具有百万分之一和十亿分度多分散性的超单分散半导体碳
  • 批准号:
    1350537
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Fabrication of Large-Area and Large-Bandgap Semiconducting Graphene Materials
大面积、大带隙半导体石墨烯材料的制备
  • 批准号:
    1129802
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Genetic architecture of reproductive isolation and introgression in experimental and natural hybrid zones in Louisiana Irises
合作提案:路易斯安那鸢尾实验区和自然杂交区生殖隔离和基因渗入的遗传结构
  • 批准号:
    0949479
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Functional Atomic Membranes for High-Performance Organic Photovoltaic Materials
用于高性能有机光伏材料的功能原子膜
  • 批准号:
    1033346
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Evolutionary Effects of the Deepwater Horizon Oil Spill on Coastal Louisiana Iris Populations
RAPID:深水地平线漏油事件对路易斯安那州沿海鸢尾种群的进化影响
  • 批准号:
    1049757
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2403736
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Atomically-Precise Single Photon Emitters
职业:原子级精确的单光子发射器
  • 批准号:
    2340398
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ATomicallY Precise nanorIbbons QUAntum pLatform
原子级精确纳米带量子平台
  • 批准号:
    10076990
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Development of atomically precise nano-molecular composite for investigation and exploration of their structure and properties
开发原子级精确的纳米分子复合材料,用于研究和探索其结构和性能
  • 批准号:
    23H01917
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of electrocatalytic activity of atomically precise metal clusters for the creation of highly active energy and environmental catalysts
阐明原子精确金属簇的电催化活性,用于创建高活性能源和环境催化剂
  • 批准号:
    23KK0098
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
  • 批准号:
    2323701
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Atomically precise, multi-ligand functionalised metal nanoclusters to combat bacterial antibiotic resistance
原子精确的多配体功能化金属纳米簇可对抗细菌抗生素耐药性
  • 批准号:
    2882405
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Atomically Precise Synthesis of Supported Au Cluster Catalysts using Ligand–Support Interactions
使用配体原子级精确合成负载型金簇催化剂
  • 批准号:
    23K13617
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FuSe-TG: Atomically Precise Graphene Nanoribbon-based Transistors: Materials, Devices, Circuits, and Systems
FuSe-TG:原子级精确石墨烯纳米带晶体管:材料、器件、电路和系统
  • 批准号:
    2235143
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GCR: Rational Design of Topological Insulators using Atomically-Precise DNA Self-Assembly
GCR:利用原子精确的 DNA 自组装技术合理设计拓扑绝缘体
  • 批准号:
    2317843
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了