P2C2: Bayesian Detection of Holocene Abrupt Transitions in Proxy Records and Climate Model Simulations

P2C2:代理记录和气候模型模拟中全新世突变的贝叶斯检测

基本信息

  • 批准号:
    2102949
  • 负责人:
  • 金额:
    $ 38.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

There is a lack of understanding of when and where abrupt climate events occurred in the past, and what are the drivers of such rapid climate shifts. This project seeks to identify the spatial and temporal components of abrupt climate transitions during the Holocene, the current interglacial period (~10.000 years). The researchers will combine paleoclimate data and models to assess the ability to simulate rapid climate shifts and predict future changes. This project will leverage several recent developments, including a dramatic increase in the number of high-resolution Holocene paleoclimate records over the past decade, the development of new statistical techniques to detect changepoints in paleoclimate records (e.g., temperature or rainfall) and handle uncertainties of the paleoclimate data, and the availability of climate simulations with increasingly realistic drivers and processes.The work aims to address three questions: (1) What is the spatial and temporal pattern of abrupt changes during the Holocene? Are they organized in time and space, or do they occur more stochastically? (2) What are the forcings (e.g., orbital forcing, solar variability, volcanic eruptions) and climate system nonlinearities (e.g., feedbacks, thresholds) that produce Holocene abrupt events? (3) Do coupled climate models simulate abrupt climate changes of the types observed in the Holocene paleoclimate record, or are models more stable?To answer these question, researchers suggest to (1) use Bayesian changepoint detection to objectively identify rapid shifts in a large data set of Holocene proxy records while accounting for age, proxy, and methodological uncertainties, (2) aggregate these results into a systematic and integrated view of transitions in time and in space, (3) apply the same algorithm to several transient simulations of Holocene climate in order to test hypotheses about the relative roles of external forcing and stochastic internal variability in generating past abrupt events.The potential Broader Impacts include a better characterization of abrupt climate events in the past, and an evaluation of their predictability with climate models. This project will generate curated paleoclimate data that will support the Findability, Accessibility, Interoperability, and Reusability (Fair) data management principles and federal data strategy. The project will also provide training and support for one post-doctoral research and an undergraduate student. Additionally, undergraduate students will be involved through internship programs in Boulder, including the NOAA Hollings Program, the NOAA Educational Partnership Program with Minority Serving Institutions, and the UCAR Significant Opportunities in Atmospheric Science program. The researchers will create new content for the “Paleo Perspective on Abrupt Climate Change” webpage hosted by the WDS-Paleo and NOAA’s National Centers for Environmental Information (NCEI), highlighting the findings from the project. This Paleo Perspectives are aimed at a general audience and explain how paleoclimatology data provide a long baseline of past change needed to understand the natural variability of the Earth’s climate over a variety of timescales. The perspectives also provide a variety of links to scientific research results and datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们对过去气候突变事件发生的时间和地点以及这种快速气候变化的驱动因素缺乏了解。该项目旨在确定全新世,即目前的间冰期(约10.000年)期间气候突变的空间和时间组成部分。研究人员将结合联合收割机古气候数据和模型,评估模拟快速气候变化和预测未来变化的能力。该项目将利用最近的几项发展,包括过去十年来高分辨率全新世古气候记录数量的急剧增加,新的统计技术的发展,以检测古气候记录中的变化点(例如,气候模拟的目的是解决以下三个问题:(1)全新世气候突变的时空格局是什么?它们是在时间和空间上有组织的,还是随机发生的?(2)力是什么(例如,轨道强迫、太阳变率、火山爆发)和气候系统非线性(例如,反馈,阈值),产生全新世突发事件?(3)耦合气候模式是否模拟了全新世古气候记录中观测到的气候突变类型,还是模式更稳定?为了回答这些问题,研究人员建议(1)使用贝叶斯变点检测来客观地识别全新世代理记录的大型数据集的快速变化,同时考虑年龄,代理和方法的不确定性,(2)将这些结果汇总为时间和空间转换的系统和综合视图,(三)将同样的算法应用于全新世气候的几个瞬态模拟,以检验关于外部强迫和随机内部变率在产生过去突发事件中的相对作用的假设。潜在的更广泛的影响包括一个更好的对过去突发性气候事件的特征描述,以及用气候模式对其可预测性的评估。该项目将生成精心策划的古气候数据,支持可查找性、可访问性、互操作性和可重用性(公平)数据管理原则和联邦数据战略。该项目还将为一名博士后研究人员和一名本科生提供培训和支持。此外,本科生将参与博尔德的实习计划,包括NOAA Hollings计划,NOAA与少数民族服务机构的教育合作计划,以及UCAR大气科学计划的重要机会。 研究人员将为WDS-Paleo和NOAA国家环境信息中心(NCEI)主办的“古气候变化视角”网页创建新内容,突出该项目的研究结果。本《古气候透视》面向普通读者,解释古气候学数据如何提供过去变化的长期基线,以了解地球气候在不同时间尺度上的自然变化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Guiterman其他文献

Christopher Guiterman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Guiterman', 18)}}的其他基金

Collaborative Research: Constraining African Climate Since the Last Glacial Maximum via Integrated Climate and Proxy System Modeling
合作研究:通过综合气候和代理系统建模限制末次盛冰期以来的非洲气候
  • 批准号:
    1903345
  • 财政年份:
    2019
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant

相似国自然基金

多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
  • 批准号:
    82173628
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
  • 批准号:
    42072326
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
  • 批准号:
    51875209
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
  • 批准号:
    U1830105
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
  • 批准号:
    41601345
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
  • 批准号:
    81673274
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
  • 批准号:
    81403276
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
  • 批准号:
    71302080
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
  • 批准号:
    51274089
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Bayesian实物期权及在信用风险决策中的应用
  • 批准号:
    71071027
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

ATD: Fast Bayesian Anomalies Detection in Dynamical System Time-varying Parameters
ATD:动态系统时变参数中的快速贝叶斯异常检测
  • 批准号:
    2318883
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Bayesian Uncertainty Quantification for Microfluidics: Assessing and Improving the Reliability of Reduced-Order Models and Sample Detection Schemes
微流体的贝叶斯不确定性量化:评估和提高降阶模型和样品检测方案的可靠性
  • 批准号:
    459970814
  • 财政年份:
    2021
  • 资助金额:
    $ 38.85万
  • 项目类别:
    WBP Position
Novel semi-supervised Bayesian learning for impurity detection in oligonucleotide drugs
用于寡核苷酸药物杂质检测的新型半监督贝叶斯学习
  • 批准号:
    2597535
  • 财政年份:
    2021
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Studentship
Bayesian Uncertainty Quantification for Microfluidics: Assessing and Improving the Reliability of Reduced-Order Models and Sample Detection Schemes
微流体的贝叶斯不确定性量化:评估和提高降阶模型和样品检测方案的可靠性
  • 批准号:
    459970841
  • 财政年份:
    2021
  • 资助金额:
    $ 38.85万
  • 项目类别:
    WBP Fellowship
Unsupervised anomaly detection in functional and anatomical image pairs by Bayesian deep learning
通过贝叶斯深度学习对功能和解剖图像对进行无监督异常检测
  • 批准号:
    20K22492
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
  • 批准号:
    1830399
  • 财政年份:
    2018
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
  • 批准号:
    1830331
  • 财政年份:
    2018
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
  • 批准号:
    RGPIN-2014-06651
  • 财政年份:
    2018
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian networks for cluster detection in microarray data
用于微阵列数据中聚类检测的贝叶斯网络
  • 批准号:
    476035-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了