Invariant Metrics on Complex Manifolds
复杂流形上的不变度量
基本信息
- 批准号:2103608
- 负责人:
- 金额:$ 34.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As one of the oldest branches in mathematics, geometry concerns the properties of spaces related to sizes, shapes, and distances of objects. Modern mathematics makes use of powerful analytic tools such as calculus to study geometry, which creates the field differential geometry. Differential geometry has been one of the most active fields in mathematics, with interconnections and applications to other mathematical fields like topology and differential equations, and also with physics - in Einstein's theory of relativity, gravity is the curvature of a metric. This project investigates the complex aspects of differential geometry, especially the important metrics on complex spaces called invariant metrics, with tools from complex analysis and differential equations. A main goal is to understand the shape or curvature of the invariant metrics, and their underlying mathematical structures. This study of complex geometry interplays with the algebraic sides of mathematics, including algebraic geometry, representation theory, and number theory, and has applications to physics such as string theory and to scientific computing via conformal maps. The project includes training through research involvement for graduate students.There are four classical invariant metrics on complex manifolds, the Bergman metric, the Caratheodory-Reiffen metric, the Kobayashi-Royden metric, and the complete Kähler-Einstein metric with negative scalar curvature. They are invariant under biholomorphisms, and hence depend only on the underlying complex structure of the complex manifold. The study of invariant metrics give rise to intriguing connections between differential geometry, several complex variables, topology, nonlinear partial differential equations, and algebraic geometry. For instance, the invariant metrics are closely related to several long-standing conjectures such as that a simply-connected, negatively curved, complete Kähler manifold must be biholomorphic to a bounded complex Euclidean domain. The Kähler-Einstein metric and the Kobayashi-Royden metric play key roles in understanding the positivity of canonical bundle. Combining methods from partial differential equations and several complex variables, the project aims to provide deeper understanding on the geometry of the invariant metrics, for a large class of complex manifolds, including complete noncompact Kähler manifolds, compact complex manifolds, and quasi-projective manifolds. The research will also lead to applications in algebraic geometry and number theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为数学中最古老的分支之一,几何学关注与物体的大小,形状和距离有关的空间属性。现代数学利用微积分等强有力的分析工具来研究几何,创造了微分几何这一领域。微分几何一直是数学中最活跃的领域之一,与拓扑学和微分方程等其他数学领域以及物理学有着相互联系和应用--在爱因斯坦的相对论中,引力是度规的曲率。该项目研究微分几何的复杂方面,特别是称为不变度量的复杂空间上的重要度量,使用复分析和微分方程的工具。一个主要的目标是了解不变度量的形状或曲率,以及它们的基本数学结构。这种复杂几何的研究与数学的代数方面相互作用,包括代数几何,表示论和数论,并应用于物理学,如弦理论和科学计算通过共形映射。复流形上有四个经典的不变度量:Bergman度量、Caratheodory-Reiffen度量、Kobayashi-Royden度量和具有负标量曲率的完备Kähler-Einstein度量。它们在双全纯下是不变的,因此只依赖于复流形的基本复结构。对不变度量的研究在微分几何、多复变、拓扑学、非线性偏微分方程和代数几何之间产生了有趣的联系。例如,不变度量与几个长期存在的命题密切相关,例如一个单连通的、负弯曲的、完备的Kähler流形必须双全纯于一个有界复欧氏域。Kähler-Einstein度规和Kobayashi-Royden度规在理解正则丛的正性中起着关键作用。结合偏微分方程和多个复变量的方法,该项目旨在为一大类复流形提供对不变度量几何的更深入理解,包括完整的非紧Kähler流形,紧致复流形和拟投射流形。该研究还将导致代数几何和数论的应用。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damin Wu其他文献
On the boundary behavior of K\"ahler-Einstein metrics on log canonical pairs
关于对数规范对的 K"ahler-Einstein 度量的边界行为
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Henri Guenancia;Damin Wu - 通讯作者:
Damin Wu
Complete Kähler–Einstein metrics under certain holomorphic covering and Examples
特定全纯覆盖下的完整凯勒-爱因斯坦度量和示例
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Damin Wu;S. Yau - 通讯作者:
S. Yau
Higher canonical asymptotics of Kahler-Einstein metrics on quasi-projective manifolds
- DOI:
10.4310/cag.2006.v14.n4.a8 - 发表时间:
2006 - 期刊:
- 影响因子:0.7
- 作者:
Damin Wu - 通讯作者:
Damin Wu
Good Kähler Metrics with Prescribed Singularities
具有规定奇点的良好凯勒指标
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Damin Wu - 通讯作者:
Damin Wu
Damin Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damin Wu', 18)}}的其他基金
相似海外基金
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Canonical metrics and stability in complex geometry
复杂几何中的规范度量和稳定性
- 批准号:
2305296 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Special hermitian metrics in complex geometry
复杂几何中的特殊埃尔米特度量
- 批准号:
RGPIN-2017-05105 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Discovery Grants Program - Individual
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
- 批准号:
22K03316 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Special hermitian metrics in complex geometry
复杂几何中的特殊埃尔米特度量
- 批准号:
RGPIN-2017-05105 - 财政年份:2021
- 资助金额:
$ 34.8万 - 项目类别:
Discovery Grants Program - Individual
Conference on Special Metrics in Complex Geometry
复杂几何特殊度量会议
- 批准号:
2109583 - 财政年份:2021
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Determining Quality Metrics Through Playtesting and Generating Complex 3D Games
通过游戏测试和生成复杂的 3D 游戏确定质量指标
- 批准号:
2441778 - 财政年份:2020
- 资助金额:
$ 34.8万 - 项目类别:
Studentship
Special hermitian metrics in complex geometry
复杂几何中的特殊埃尔米特度量
- 批准号:
RGPIN-2017-05105 - 财政年份:2020
- 资助金额:
$ 34.8万 - 项目类别:
Discovery Grants Program - Individual
Conference on Special Metrics in Complex Geometry
复杂几何特殊度量会议
- 批准号:
1841018 - 财政年份:2020
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Special hermitian metrics in complex geometry
复杂几何中的特殊埃尔米特度量
- 批准号:
RGPIN-2017-05105 - 财政年份:2019
- 资助金额:
$ 34.8万 - 项目类别:
Discovery Grants Program - Individual