Elements: Spatiotemporal Analysis of Magnetic Polarity Inversion Lines (STEAMPIL)

元素:磁极性反转线的时空分析 (STEAMPIL)

基本信息

项目摘要

Extreme space weather events such as solar flares, coronal mass ejections, energetic proton events and geomagnetic storms can cause massive disruptions in many technologically complex systems, including radio communications, telecommunication and navigation satellites, electrical power systems, or space and even commercial airline flights. This project builds a detection and analysis cyberinfrastructure, and investigates one of the most distinctive features in the solar atmosphere – magnetic polarity inversion lines, which are hotspots of the most intense eruptive activity. Analyzing these features enables solar physicists to advance understanding of extreme space weather events and provide needed predictive capabilities for space weather forecasters.This project creates an innovative and sustainable software infrastructure to detect, characterize and analyze polarity inversion lines. The first step toward that objective is the identification of polarity inversion lines, and quantitative characterization of these multi-faceted features through image descriptors. In subsequent stages, this project analyzes the time series of these features and descriptors using advanced machine learning and data mining techniques, specifically for improving space weather forecasting capabilities. This includes analyzing the spatiotemporal patterns of emergence and disappearance for polarity inversion lines, selecting and understanding important shape characteristics of these lines pertinent to solar eruptive activity, and creating a prototype eruption forecasting system with discovered precursors. Automatically identifying and analyzing polarity inversion lines has several direct benefits: physically understanding solar magnetic shear layers and the transition from typical non-eruptive active region states to intense, eruptive ones; making contributions to forecasting of solar eruptions; and generating descriptors and measures that can be useful to the study of shear layers in nature.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Solar Terrestrial Physics Program and the Division of Integrative and Collaborative Education and Research within the NSF Directorate for Geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳耀斑、日冕物质抛射、高能质子事件和地磁风暴等极端太空天气事件可能会对许多技术复杂的系统造成巨大破坏,包括无线电通信、电信和导航卫星、电力系统、太空甚至商业航班。 该项目建立了一个探测和分析网络基础设施,并研究了太阳大气中最显着的特征之一——磁极性反转线,这是最强烈的喷发活动的热点。分析这些特征使太阳物理学家能够加深对极端空间天气事件的理解,并为空间天气预报员提供所需的预测能力。该项目创建了一个创新且可持续的软件基础设施,用于检测、表征和分析极性反转线。实现该目标的第一步是识别极性反转线,并通过图像描述符对这些多方面特征进行定量表征。在后续阶段,该项目使用先进的机器学习和数据挖掘技术来分析这些特征和描述符的时间序列,特别是为了提高空间天气预报能力。这包括分析极性反转线出现和消失的时空模式,选择和理解与太阳喷发活动相关的这些线的重要形状特征,以及利用已发现的前兆创建原型喷发预报系统。自动识别和分析极性反转线有几个直接的好处:从物理上理解太阳磁剪切层以及从典型的非喷发活动区域状态到强烈的喷发区域状态的转变;为太阳喷发的预测做出贡献;并生成可用于研究自然界剪切层的描述符和测量方法。该奖项由先进网络基础设施办公室颁发,并得到日地物理计划和 NSF 地球科学理事会综合协作教育与研究部的共同支持。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的评估进行评估,认为值得支持。 影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Explaining Full-disk Deep Learning Model for Solar Flare Prediction using Attribution Methods
Flare to CME Association Integration
Flare 与 CME 协会整合
  • DOI:
    10.7910/dvn/wsey4t
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji, Anli;Aydin, Berkay
  • 通讯作者:
    Aydin, Berkay
Beyond Traditional Flare Forecasting: A Data-driven Labeling Approach for High-fidelity Predictions
超越传统的耀斑预测:用于高保真预测的数据驱动标记方法
A Systematic Magnetic Polarity Inversion Lines Dataset from SDO and HMI Magnetograms
来自 SDO 和 HMI 磁图的系统磁极性反演线数据集
  • DOI:
    10.7910/dvn/bkp1rh
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji, Anli;Cai, Xumin;Khasayeva, Nigar;Georgoulis, Manolis;Martens, Petrus;Angryk, Rafal;Aydin, Berkay
  • 通讯作者:
    Aydin, Berkay
Towards coupling full-disk and active region-based flare prediction for operational space weather forecasting
  • DOI:
    10.3389/fspas.2022.897301
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chetraj Pandey;Anli Ji;R. Angryk;M. Georgoulis;Berkay Aydin
  • 通讯作者:
    Chetraj Pandey;Anli Ji;R. Angryk;M. Georgoulis;Berkay Aydin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Berkay Aydin其他文献

Parallel computation of magnetic field parameters from HMI active region patches
HMI 活动区域补丁的磁场参数的并行计算
Significance Measurements for Spatiotemporal Co-occurrences
时空共现的显着性测量
  • DOI:
    10.1007/978-3-319-99873-2_4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Berkay Aydin;R. Angryk
  • 通讯作者:
    R. Angryk
Spatiotemporal Co-occurrence Pattern (STCOP) Mining
时空共现模式(STCOP)挖掘
  • DOI:
    10.1007/978-3-319-99873-2_5
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Berkay Aydin;R. Angryk
  • 通讯作者:
    R. Angryk
Machine Learning in Heliophysics and Space Weather Forecasting: A White Paper of Findings and Recommendations
太阳物理学和空间天气预报中的机器学习:调查结果和建议白皮书
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Nita;M. Georgoulis;I. Kitiashvili;V. Sadykov;E. Camporeale;A. Kosovichev;Haimin Wang;Vincent Oria;J. Wang;R. Angryk;Berkay Aydin;Azim Ahmadzadeh;X. Bai;T. Bastian;S. F. Boubrahimi;Bin Chen;A. Davey;Sheldon Fereira;G. Fleishman;D. Gary;A. Gerrard;G. Hellbourg;K. Herbert;J. Ireland;E. Illarionov;Natsuha Kuroda;Qin Li;Chang Liu;Yuexin Liu;Hyomin Kim;Dustin J. Kempton;Ruizhe Ma;P. Martens;R. McGranaghan;E. Semones;J. Stefan;A. Stejko;Y. Collado;Meiqi Wang;Yan Xu;Sijie Yu
  • 通讯作者:
    Sijie Yu
A Catalog of Solar Flare Events Observed by the SOHO/EIT
SOHO/EIT 观测到的太阳耀斑事件目录

Berkay Aydin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于分子动力学的沥青/集料界面行为Spatiotemporal模型
  • 批准号:
    51378073
  • 批准年份:
    2013
  • 资助金额:
    72.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatiotemporal trend analysis and ecological risk assessment of monitoring and emerging environmental chemicals in the Asia-Pacific region
亚太地区监测及新兴环境化学品时空趋势分析及生态风险评估
  • 批准号:
    23H00533
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
  • 批准号:
    2220373
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Analysis of spatiotemporal involvement of retinoic acid in pharyngeal arch arteries
视黄酸对咽弓动脉的时空影响分析
  • 批准号:
    22KJ2601
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Live-imaging analysis to reveal spatiotemporal dynamics of cyanobacterial light signaling
实时成像分析揭示蓝藻光信号的时空动态
  • 批准号:
    22KJ1374
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
Combined Segmentation and Hemodynamic Analysis of Cerebrovascular Structures using Spatiotemporal Arterial Spin Labeling MRI
使用时空动脉自旋标记 MRI 进行脑血管结构的组合分割和血流动力学分析
  • 批准号:
    RGPIN-2016-04068
  • 财政年份:
    2022
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Discovery Grants Program - Individual
High-resolution spatiotemporal analysis of harmaline-induced tremor and inferior olive activity in living mice
活体小鼠骆驼蓬碱引起的震颤和下橄榄活动的高分辨率时空分析
  • 批准号:
    22K06478
  • 财政年份:
    2022
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatiotemporal and Deep Learning Analysis of Cardiac Imaging for Predictive Risk Stratification in Duchenne Muscular Dystrophy
心脏成像的时空和深度学习分析用于杜氏肌营养不良症的预测风险分层
  • 批准号:
    10536912
  • 财政年份:
    2022
  • 资助金额:
    $ 59.99万
  • 项目类别:
Spatiotemporal and Deep Learning Analysis of Cardiac Imaging for Predictive Risk Stratification in Duchenne Muscular Dystrophy
心脏成像的时空和深度学习分析用于杜氏肌营养不良症的预测风险分层
  • 批准号:
    10833464
  • 财政年份:
    2022
  • 资助金额:
    $ 59.99万
  • 项目类别:
Spatiotemporal analysis of TDP-43 toxicity and endolysosomal turnover mechanisms
TDP-43毒性和内溶酶体周转机制的时空分析
  • 批准号:
    10626673
  • 财政年份:
    2022
  • 资助金额:
    $ 59.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了