Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
基本信息
- 批准号:2104032
- 负责人:
- 金额:$ 58.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops a 3D reconstruction sensing system that can be installed on unmanned aerial systems (UAS), to be used by agricultural researchers, growers, and service providers to assess crop growth. Applying Artificial Intelligence (AI) technology for large scale agriculture reconstruction applications, the sensing system would be able to estimate crop structure for a large coverage area at a much lower cost than current standards that rely on light detection and ranging (LiDAR). The project would develop and refine a deep neural network-based 3D assessment workflow, based solely on a low cost and lightweight 2D LiDAR and color camera configuration. Researchers, growers, and service providers would be able to extract detailed crop structure and forecast yields, based on a 3D time series of crop growth. The technology would provide a less expensive alternative to the current 3D LiDAR sensor approach, and the sensing system could also be applied to related areas such as high-throughput phenotyping and variation estimation of general terrestrial vegetation. Outreach and extension activities are included, to deliver research outcomes to the stakeholders, including agricultural researchers, growers and service providers. PhD students, undergraduates, and high school students will be trained through this project, including a summer activity training high school students through the Rochester Institute of Technology Imaging Science High School Summer Intern Program.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Biological Infrastructure within the NSF Biosciences Directorate, and by the Division of Information and Intelligent Systems within the NSF Computer and Information Science and Engineering Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了一种3D重建传感系统,可安装在无人机系统(UAS)上,供农业研究人员、种植者和服务提供商用于评估作物生长。 将人工智能(AI)技术应用于大规模农业重建应用,传感系统将能够以比依赖光探测和测距(LiDAR)的当前标准低得多的成本估计大覆盖区域的作物结构。 该项目将开发和完善基于深度神经网络的3D评估工作流程,仅基于低成本和轻量级的2D LiDAR和彩色相机配置。 研究人员、种植者和服务提供商将能够根据作物生长的3D时间序列提取详细的作物结构并预测产量。 该技术将为当前的3D LiDAR传感器方法提供一种更便宜的替代方案,并且传感系统还可以应用于相关领域,例如高通量表型分析和一般陆地植被的变化估计。 还包括外联和推广活动,向利益攸关方,包括农业研究人员、种植者和服务提供者提供研究成果。 博士生,本科生和高中生将通过这个项目进行培训,包括通过罗切斯特理工学院成像科学高中暑期实习计划培训高中生的暑期活动。高级网络基础设施办公室的这个奖项由NSF生物科学理事会生物基础设施部门共同支持,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-supervised Depth Estimation from Spectral Consistency and Novel View Synthesis
根据光谱一致性和新颖视图合成进行自监督深度估计
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yawen Lu, Guoyu Lu
- 通讯作者:Yawen Lu, Guoyu Lu
An Unsupervised Approach for Simultaneous Visual Odometry and Single Image Depth Estimation
同步视觉里程计和单图像深度估计的无监督方法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lu, Yawen;Lu, Guoyu
- 通讯作者:Lu, Guoyu
Self-Supervised Single-Image Depth Estimation From Focus and Defocus Clues
- DOI:10.1109/lra.2021.3092258
- 发表时间:2021-10
- 期刊:
- 影响因子:5.2
- 作者:Yawen Lu;Garrett Milliron;John Slagter;G. Lu
- 通讯作者:Yawen Lu;Garrett Milliron;John Slagter;G. Lu
3D SceneFlowNet: Self-Supervised 3D Scene Flow Estimation Based on Graph CNN
- DOI:10.1109/icip42928.2021.9506286
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Yawen Lu;Yuhao Zhu;G. Lu
- 通讯作者:Yawen Lu;Yuhao Zhu;G. Lu
AGI for Agriculture
- DOI:10.48550/arxiv.2304.06136
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:G. Lu;Sheng Li;Gengchen Mai;Jin Sun;Dajiang Zhu;L. Chai;Haijian Sun;Xianqiao Wang;Haixing Dai
- 通讯作者:G. Lu;Sheng Li;Gengchen Mai;Jin Sun;Dajiang Zhu;L. Chai;Haijian Sun;Xianqiao Wang;Haixing Dai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoyu Lu其他文献
Regularization and attention feature distillation base on light CNN for Hyperspectral face recognition
- DOI:
https://doi.org/10.1007/s11042-021-10537-4 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Zhihua Xie;Jieyi Niu;Yi Li;Guoyu Lu - 通讯作者:
Guoyu Lu
Bifunctional S-scheme CdSSe/Bisub2/subWOsub6/sub heterojunction catalysts exhibit generalized boosting performance in photocatalytic degradation of tetracycline hydrochloride, photoelectrochemical and electrocatalytic hydrogen production
双功能 S 型 CdSSe/双钨酸铋(Bisub2/subWOsub6/sub)异质结催化剂在盐酸四环素的光催化降解、光电化学和电催化制氢中表现出普遍的增强性能
- DOI:
10.1016/j.jallcom.2023.173306 - 发表时间:
2024-03-05 - 期刊:
- 影响因子:6.300
- 作者:
Shuai Yang;Han Yang;Jun Zhang;Jiacen Lin;Guoyu Lu;Yujia Zhang;Junhua Xi;Zhe Kong;Lihui Song;Haijiao Xie - 通讯作者:
Haijiao Xie
Object Detection Based on Raw Bayer Images
- DOI:
10.1109/iros55552.2023.10342008 - 发表时间:
2023-10 - 期刊:
- 影响因子:0
- 作者:
Guoyu Lu - 通讯作者:
Guoyu Lu
RawSeg: Grid Spatial and Spectral Attended Semantic Segmentation Based on Raw Bayer Images
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Guoyu Lu - 通讯作者:
Guoyu Lu
An Improved Phase Correlation Method for Stop Detection of Autonomous Driving
自动驾驶停车检测的改进相位相关法
- DOI:
10.1109/access.2020.2990227 - 发表时间:
2020-04 - 期刊:
- 影响因子:3.9
- 作者:
Zhelin Yu;Lidong Zhu;Guoyu Lu - 通讯作者:
Guoyu Lu
Guoyu Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoyu Lu', 18)}}的其他基金
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 58.37万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
- 批准号:
2334690 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
- 批准号:
2334246 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2126643 - 财政年份:2021
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
- 批准号:
2105257 - 财政年份:2021
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
相似国自然基金
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
- 批准号:12271434
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
- 批准号:2020A151501709
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向Deep Web的数据整合关键技术研究
- 批准号:61872168
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于语义计算的海量Deep Web知识探索机制研究
- 批准号:61272411
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
- 批准号:61100167
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
- 批准号:61170020
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Deep Web敏感聚合信息保护方法研究
- 批准号:61003054
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
- 批准号:61070122
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 58.37万 - 项目类别:
Research Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 58.37万 - 项目类别:
Continuing Grant
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
- 批准号:
23K11049 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant