Deep neural networks

深度神经网络

基本信息

  • 批准号:
    2902331
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The success of deep neural networks (DNNs) is undeniable: the recent boom of large language models (LLMs), such as OpenAI's GPT models, Google's PaLM and Gemini models, and Anthropic's Bard, has alone been highlighted as a key area of interest and potential by the House of Lords and the Alan Turing Institute. However, the resource requirements for deep learning models is significant, almost prohibitively so in the case of large transformer models. This renders many applications infeasible: for example, many low-memory edge devices can not run inference for even a moderately-sized LLM.Effort has been made to resolve the computational issues of DNNs, increasing the efficiency of the model while still maintaining accuracy, largely through compression methods. One such method is pruning, removing parameters from the full network, which allows a network to be reduced in size by upwards of 90% while still scoring high (relative) accuracy. Another compression method is matrix sketching, low-dimension or -rank approximations of the internal matrices of parameters, which can yield similar results in some settings.While showing promise, these and other compression methods are yet to make DNNs sufficiently computationally efficient for many applications and each method has its own issues and limitations. Furthermore, most methods and associated theory are tailored for particular models, e.g. convolutional neural networks, and so newer models, such as transformers, lack robust and mathematically guaranteed methods. As such, this project will examine and extend compression methods for DNNs, focussing on matrix sketching methods for transformer models.Transformers, with their many long context-length matrices, are prime targets for matrix sketching methods and recent developments show that matrix sketching can reduce computational cost of transformer models by 50%. However, this reduction is low in comparison to the state-of-the-art for other models and furthermore the methods are tailored for inference and so do not apply to training. We will seek to develop new matrix sketching methods that can achieve greater reductions for transformer models, achieving this by leveraging and progressing new results regarding over-parameterisation and generalisation theory of DNNs and hashing-based matrix sketching methods. We will then apply the underlying principles of these methods to develop analogous variants for the training process of transformer models. With these methods developed and their performance proven, we can assess whether they can be generalised further to other models, potentially placing them in an overarching framework of matrix sketching methods for DNNs, and the implications of such parameter reductions on the over-parameterisation regime of DNNs.This project is supervised by Professor Jared Tanner and Professor Coralia Cartis. Additionally, we may collaborate with Dr. Shiwei Liu, particularly on what the current empirical results demonstrate and suggest. Finally, the project's direction on reducing computational requirements of DNNs is proposed by Advanced Micro Devices Inc.Completion of this project will entail improved methods and understanding of the compression of DNNs. This will reduce their computational cost, thereby making them more accessible and applicable. As such, this project falls within the EPSRC Mathematical Sciences, the Numerical Analysis, and the Non-Linear Systems areas of research.
深度神经网络(DNN)的成功是不可否认的:最近大型语言模型(LLM)的繁荣,如OpenAI的GPT模型,谷歌的PaLM和Gemini模型,以及Anthropic的Bard,已经被上议院和艾伦图灵研究所强调为感兴趣和潜力的关键领域。然而,深度学习模型的资源需求是显著的,在大型Transformer模型的情况下几乎是禁止的。这使得许多应用程序不可行:例如,许多低内存边缘设备甚至无法为中等大小的LLM运行推理。人们已经努力解决DNN的计算问题,提高模型的效率,同时仍然保持准确性,主要是通过压缩方法。一种这样的方法是修剪,从整个网络中删除参数,这允许网络的大小减少90%以上,同时仍然具有高(相对)准确性。另一种压缩方法是矩阵草图,参数内部矩阵的低维或秩近似,在某些情况下可以产生类似的结果。虽然显示出希望,但这些和其他压缩方法尚未使DNN在许多应用中具有足够的计算效率,并且每种方法都有自己的问题和局限性。此外,大多数方法和相关理论都是为特定模型定制的,例如卷积神经网络,因此较新的模型,如变压器,缺乏鲁棒性和数学保证的方法。因此,本项目将研究和扩展DNN的压缩方法,重点是Transformer模型的矩阵草图方法。变压器具有许多长上下文长度矩阵,是矩阵草图方法的主要目标,最近的发展表明,矩阵草图可以将Transformer模型的计算成本降低50%。然而,与其他模型的最新技术相比,这种减少是低的,此外,这些方法是为推理量身定制的,因此不适用于训练。我们将寻求开发新的矩阵草图绘制方法,可以实现更大的减少Transformer模型,实现这一目标,通过利用和进步的新成果,过度参数化和泛化理论的DNN和基于散列的矩阵草图绘制方法。然后,我们将应用这些方法的基本原理,为Transformer模型的训练过程开发类似的变体。随着这些方法的开发和性能的证明,我们可以评估它们是否可以进一步推广到其他模型,可能将它们置于DNN矩阵草图方法的总体框架中,以及这些参数减少对DNN过度参数化制度的影响。此外,我们可以与刘世伟博士合作,特别是在目前的实证结果表明和建议。最后,Advanced Micro Devices Inc.提出了减少DNN计算需求的项目方向。该项目的完成将需要改进DNN压缩方法和理解。这将降低它们的计算成本,从而使它们更容易获得和适用。因此,该项目属于EPSRC数学科学、数值分析和非线性系统研究领域。福尔斯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
  • 批准号:
    82371379
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
  • 批准号:
    82371373
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
LIPUS响应的弹性石墨烯多孔导管促进神经再生及其机制研究
  • 批准号:
    82370933
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
生理/病理应激差异化调控肝再生的“蓝斑—中缝”神经环路机制
  • 批准号:
    82371517
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
弓状核介导慢性疼痛引起动机下降的神经环路机制及rTMS干预研究
  • 批准号:
    82371536
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
听觉刺激特异性调控情绪的神经环路机制研究
  • 批准号:
    82371516
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TAG1/APP信号通路调控的miRNA及其在神经前体细胞增殖和分化中的作用机制
  • 批准号:
    31171313
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
  • 批准号:
    2340516
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
  • 批准号:
    2239977
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
  • 批准号:
    23K11049
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks
使用生物物理约束的深度神经网络对癫痫源进行成像
  • 批准号:
    10655833
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
  • 批准号:
    10723553
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Crop design simulator utilizing deep neural networks with crop growth model as knowledge layer
利用深度神经网络以作物生长模型作为知识层的作物设计模拟器
  • 批准号:
    23H02200
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    2311500
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
  • 批准号:
    2342618
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了