GOALI: Spin-Orbit Torques From Magnetically Ordered Materials and Their Applications

GOALI:磁有序材料的自旋轨道扭矩及其应用

基本信息

  • 批准号:
    2105114
  • 负责人:
  • 金额:
    $ 39.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Abstract:This project brings together leading researchers from New York University and IBM with the aim of furthering the understanding and application of nanometer scale magnetic devices and materials. Magnetic nanostructures are widely used in technology with the most advanced applications found in the semiconductor industry. This is associated with the fact that there can be large reductions in energy usage when information is stored and processed with magnetic materials; because data stored in magnetic materials can be retained without power (or a battery in mobile devices). Because of ever-increasing worldwide demands for data processing and storage, advanced magnetic devices form the backbone of huge industries in the United States. This project aims to uncover more efficient means of writing magnetic information using magnetic materials themselves as the source of spin-orbit torques. The project is integrated with the training of young scientists in this forefront area of magnetism research. Graduate and undergraduate students involved in this collaboration will gain by interactions between academia and industry and will be enriched through exposure to a variety of perspectives, expertise and techniques present in an industrial setting. Technical Abstract:This NSF-GOALI project brings together leading researchers in nanomagnetism from New York University and IBM with the aim of furthering the understanding and application of spintronics. An important and overarching goal of spintronics is to discover and characterize more efficient means of generating spin currents and associated spin torques on magnetization. Recently it has been established that spin-orbit interactions enable very efficient charge-to-spin conversion and large torques on magnetic layers. However, the spin polarization that acts on the ferromagnetic layer is typically confined to the layer plane, and thus is very effective at reversing the magnetization of in-plane magnetized layers but far less effective in switching and exciting the magnetization of perpendicularly magnetized elements. This project investigates spin currents associated with spin-orbit coupling in ferromagnetic layers and their interfaces to nonmagnets, which have the potential to generate spin currents polarized perpendicular to the layer planes. The charge-to-spin conversion efficiency and the symmetry of the response are studied for a variety of transition metal materials and interfaces as a function of magnetization angle. Time-resolved and spatially resolved probes of magnetization dynamics are employed to reveal magnetization switching mechanisms in thin perpendicularly magnetized layers and patterned nanostructures to further the understanding of the nonlinear magnetization dynamics excited by spin-transfer torques. Graduate and undergraduate students involved in this collaboration will gain by interactions between academia and industry and through student exchanges between NYU and IBM. Their education will be enriched through the variety of perspectives, expertise and techniques present in an industrial setting. High school students will also be encouraged to participate in this research project. As part of this project the PIs will develop a new course at NYU on Physics and Technology with the goal of introducing students to physics in the “real world” (outside of universities). The course will highlight the skills needed to apply physics to commercialize technologies and impact society more broadly in technological fields, including in magnetism and quantum information.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:该项目汇集了来自纽约大学和IBM的顶尖研究人员,目的是促进对纳米级磁性设备和材料的理解和应用。磁性纳米结构在技术上得到了广泛的应用,在半导体工业中具有最先进的应用。这与这样一个事实有关,即使用磁性材料存储和处理信息时,可以大幅减少能源使用;因为存储在磁性材料中的数据可以在没有电源(或移动设备中的电池)的情况下保留。由于世界范围内对数据处理和存储的需求不断增加,先进的磁性设备构成了美国巨大工业的支柱。该项目旨在发现利用磁性材料本身作为自旋轨道力矩的来源来写入磁性信息的更有效的方法。该项目与对这一磁性研究前沿领域的年轻科学家的培训相结合。参与这一合作的研究生和本科生将从学术界和工业界之间的互动中受益,并将通过接触到工业环境中存在的各种视角、专业知识和技术而得到丰富。技术摘要:NSF-GOALI项目汇集了来自纽约大学和IBM的纳米磁学领域的顶尖研究人员,目的是促进对自旋电子学的理解和应用。自旋电子学的一个重要和首要目标是发现和表征在磁化过程中产生自旋电流和相关自旋力矩的更有效的方法。最近,人们已经证实,自旋-轨道相互作用能够非常有效地将电荷转化为自旋,并在磁性层上产生大扭矩。然而,作用在铁磁层上的自旋极化通常局限于层平面,因此在反转平面内磁化层的磁化方面非常有效,但在切换和激发垂直磁化元件的磁化方面效果要差得多。这个项目研究了铁磁层中与自旋-轨道耦合相关的自旋电流及其与非磁体的界面,这些界面有可能产生垂直于层平面极化的自旋电流。研究了各种过渡金属材料和界面的电荷-自旋转换效率和响应对称性随磁化角的变化规律。利用时间分辨和空间分辨的磁化动力学探针揭示了垂直磁化层和图案化纳米结构中的磁化开关机制,以进一步了解由自旋转移力矩激发的非线性磁化动力学。参与这一合作的研究生和本科生将从学术界和工业界之间的互动以及纽约大学和IBM之间的学生交流中受益。他们的教育将通过在工业环境中存在的各种视角、专业知识和技术来丰富。还将鼓励高中生参与这一研究项目。作为该项目的一部分,PIS将在纽约大学开发一门新的物理与技术课程,目的是向学生介绍“真实世界”(大学以外的)物理。该课程将突出应用物理学将技术商业化并在包括磁学和量子信息在内的技术领域更广泛地影响社会所需的技能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A perspective on electrical generation of spin current for magnetic random access memories
  • DOI:
    10.1063/5.0084551
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    C. Safranski;Jonathan Z. Sun;A. Kent
  • 通讯作者:
    C. Safranski;Jonathan Z. Sun;A. Kent
Brillouin light scattering from quantized spin waves in nanowires with antisymmetric exchange interactions
具有反对称交换相互作用的纳米线中量子化自旋波的布里渊光散射
  • DOI:
    10.1103/physrevb.107.054402
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xu, Jun-Wen;Riley, Grant A.;Shaw, Justin M.;Nembach, Hans T.;Kent, Andrew D.
  • 通讯作者:
    Kent, Andrew D.
Field-free current-induced magnetization switching in GdFeCo: A competition between spin–orbit torques and Oersted fields
  • DOI:
    10.1063/5.0091944
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    J. Bello;Y. Quessab;Jun-Wen Xu;M. Vergés;Héloïse Damas;S. Petit-Watelot;J. Rojas Sánchez;M. Hehn;A. Kent;S. Mangin
  • 通讯作者:
    J. Bello;Y. Quessab;Jun-Wen Xu;M. Vergés;Héloïse Damas;S. Petit-Watelot;J. Rojas Sánchez;M. Hehn;A. Kent;S. Mangin
Spin Mixing in Ferromagnets Revealed
揭示铁磁体中的自旋混合
  • DOI:
    10.1103/physics.14.156
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Kent, Andrew D.
  • 通讯作者:
    Kent, Andrew D.
Perspectives on spintronics technology development: Giant magnetoresistance to spin transfer torque magnetic random access memory
  • DOI:
    10.1063/5.0075945
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Pinarbasi, M.;Kent, A. D.
  • 通讯作者:
    Kent, A. D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Kent其他文献

Poster: AML-212: Treatment Free Remission (TFR) After Ceasing Venetoclax-Based Therapy in Responding Patients with Acute Myeloid Leukemia
  • DOI:
    10.1016/s2152-2650(21)01339-2
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chong Chyn Chua;Daneille Hammond;Andrew Kent;Ing Soo Tiong;Doen Ming Ong;Konopleva Marina;Daniel A. Pollyea;Courtney D. DiNardo;Andrew H. Wei
  • 通讯作者:
    Andrew H. Wei
Treatment-Related and De Novo Ccus Have Similar Molecular Features and Risk of Progression to Myeloid Malignancies
  • DOI:
    10.1182/blood-2024-201062
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Santos;Diana Abbott;Grace Bosma;Andrew Kent;Marc Schwartz;Christine M. McMahon;Jonathan Gutman;Daniel A Pollyea;Maria L Amaya
  • 通讯作者:
    Maria L Amaya
Technical Video: Bilateral Tubal Adhesiolysis With Cuff Salpingostomy
  • DOI:
    10.1016/j.jmig.2015.09.019
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fevzi Shakir;Andrew Kent
  • 通讯作者:
    Andrew Kent
Higher-Dose Venetoclax with Measurable Residual Disease-Guided Azacitidine Discontinuation in Newly Diagnosed Patients with Acute Myeloid Leukemia: Phase 2 Hiddav Study
  • DOI:
    10.1182/blood-2022-157802
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan A. Gutman;Amanda C. Winters;Andrew Kent;Maria L. Amaya;Christine M. McMahon;Clayton Smith;Craig T Jordan;Brett M. Stevens;Mohammad Minhajuddin;Shanshan Pei;Jeffrey Schowinsky;Jennifer Tobin;Kelly O'Brien;Angela Falco;Elizabeth Taylor;Constance Brecl;Phuong Ho;Connor Sohalski;Jessica Dell-Martin;Olivia Ondracek
  • 通讯作者:
    Olivia Ondracek
Results from a Clinical Study of the All-Oral Regimen of CC-486 (Oral Azacitidine) and Venetoclax for Newly Diagnosed and Relapsed and Refractory Acute Myeloid Leukemia
  • DOI:
    10.1182/blood-2024-202839
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Maria L Amaya;Christine M. McMahon;Marc Schwartz;Jonathan Gutman;Andrew Kent;Diana Abbott;Connor Sohalski;Jessica Dell-Martin;Ayele Belachew;Brett M Stevens;Craig T Jordan;Daniel A Pollyea
  • 通讯作者:
    Daniel A Pollyea

Andrew Kent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Kent', 18)}}的其他基金

Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
  • 批准号:
    2246358
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
GOALI: Spin-Transfer in Magnetic Nanostructures
目标:磁性纳米结构中的自旋转移
  • 批准号:
    1610416
  • 财政年份:
    2016
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Multichamber Deposition and Surface Analysis System for Quantum Materials and Device Research
MRI:获取用于量子材料和器件研究的多室沉积和表面分析系统
  • 批准号:
    1531664
  • 财政年份:
    2015
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
GOALI: Spin-Transfer in Magnetic Nanostructures
目标:磁性纳米结构中的自旋转移
  • 批准号:
    1309202
  • 财政年份:
    2013
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Continuing Grant
GOALI: Spin Transfer in Magnetic Nanostructures
GOALI:磁性纳米结构中的自旋转移
  • 批准号:
    1006575
  • 财政年份:
    2010
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Continuing Grant
GOALI: Spin Transfer in Magnetic Nanostructures
GOALI:磁性纳米结构中的自旋转移
  • 批准号:
    0706322
  • 财政年份:
    2007
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
FRG: NIRT: Quantum Spin Dynamics in Molecular Nanomagnets
FRG:NIRT:分子纳米磁体中的量子自旋动力学
  • 批准号:
    0506946
  • 财政年份:
    2005
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
Nanoscale Spin Transfer Devices and Materials
纳米级自旋转移器件和材料
  • 批准号:
    0405620
  • 财政年份:
    2004
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Continuing Grant
Acquisition of a High Frequency Measurement System for Magnetic Nanostructure Research and Student Training
采购用于磁性纳米结构研究和学生培训的高频测量系统
  • 批准号:
    0315609
  • 财政年份:
    2003
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
Acquisition of a Vector High Field Magnet System for Magnetic Nanostructure Research and Student Training
获取用于磁性纳米结构研究和学生培训的矢量高场磁体系统
  • 批准号:
    0114142
  • 财政年份:
    2001
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant

相似国自然基金

SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
  • 批准号:
    82372269
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
  • 批准号:
    82374540
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
  • 批准号:
    82103490
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自旋为1的Spin-Peierls模型的量子相变研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
  • 批准号:
    82060566
  • 批准年份:
    2020
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
  • 批准号:
    81902698
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
  • 批准号:
    11801499
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Spin-Seebeck效应中多自由度耦合的非平衡动力学研究
  • 批准号:
    11864001
  • 批准年份:
    2018
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
几乎平坦流形上的Spin结构和配边问题
  • 批准号:
    11801186
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Exploring the spin-orbit interaction of light in the whispering gallery mode hollow-microcavities
探索回音壁模式中空微腔中光的自旋轨道相互作用
  • 批准号:
    24K08290
  • 财政年份:
    2024
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Light-spin interconversion in heavy metals with strong spin orbit coupling
具有强自旋轨道耦合的重金属中的轻自旋互变
  • 批准号:
    22KJ0496
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Enhancement of the spin-orbit interaction and exotic superconductivity in correlated metals
相关金属中自旋轨道相互作用和奇异超导性的增强
  • 批准号:
    23K03330
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328830
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Continuing Grant
Theoretical and experimental research on spin-orbit emergent inductance
自旋轨道涌现电感的理论与实验研究
  • 批准号:
    23H01828
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328829
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Amplitude, Easy-Plane Spin-Orbit Torque Oscillators
合作研究:大振幅、简易平面自旋轨道扭矩振荡器
  • 批准号:
    2236159
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
Exploring novel quantum phenomena induced by spin-orbit coupling and quantum interference effects
探索自旋轨道耦合和量子干涉效应引起的新颖量子现象
  • 批准号:
    23KJ0783
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328828
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328826
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了