FRG: NIRT: Quantum Spin Dynamics in Molecular Nanomagnets

FRG:NIRT:分子纳米磁体中的量子自旋动力学

基本信息

  • 批准号:
    0506946
  • 负责人:
  • 金额:
    $ 130万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

****NON-TECHNICAL ABSTRACT****This award results from a proposal received in response to Nanoscale Science and Engineering initiative, NSF 04-043, category NIRT. It supports an interdisciplinary research effort that will investigate the quantum dynamics of chemically synthesized magnetic nanostructures. The miniaturization of magnetic devices to this size is critical to advances in magnetic information processing, which is an important industry in the United States. Conventional techniques used to fabricate magnetic nanostructures have serious limitations. For this reason, there is a growing interest in chemical syntheses that provide a bottom-up or molecule-based approach to the assembly of magnetic nanostructures--often, with atomic scale control of magnetic structure. This project will focus on the magnetization dynamics and how the environment of the nanomagnet affects these dynamics. For a large magnet, this coupling leads to energy dissipation or magnetic friction. For magnetic nanostructures the environment also leads to the loss of quantum information, known as decoherence. An important aim of this project is to understand the microscopic mechanisms of energy dissipation and decoherence in nanomagnets, and to develop synthetic strategies to mitigate certain environmental effects, such as decoherence. Chemical synthesis of magnetic nanostructures will be combined with advanced magnetic measurement techniques, which include high-speed high-sensitivity magnetometry, magnetic resonance and neutron scattering. This program will provide the highest quality interdisciplinary research training to a diverse group of undergraduate students, graduate students and post-doctoral scientists. Students will be trained in cutting edge chemical synthesis and magnetic measurement techniques. The Division of Materials Research and the Division of Chemistry provide support for this project.****TECHNICAL ABSTRACT****This award results from a proposal received in response to Nanoscale Science and Engineering initiative, NSF 04-043, category NIRT. It supports an interdisciplinary research effort that will investigate the quantum spin dynamics of nanometer-sized single-molecule magnets (SMMs) using a bottom-up or molecule-based approach. This is a powerful approach in which magnetic nanostructures are synthesized chemically using solution methods. An understanding of the dynamics of nanomagnets is important to technological applications. Of particular interest, and very poorly understood at present, is how the coupling between spins and their environment affect their dynamics. In classical magnetism this coupling leads to dissipation and damping of the magnetization precession. In the quantum case, interaction with the environment limits the spin coherence time and leads to the loss of quantum information. This research program will study: quantum magnetization dynamics; energy and angular momentum relaxation; and spin-excitations in nanomagnets. An important aim is to further understand the microscopic mechanisms of dissipation and decoherence in nanomagnets, and to develop synthetic strategies to mitigate certain environmental effects, such as decoherence. The following experimental techniques will be employed, pulsed EPR, time-resolved and high-sensitivity magnetometry, NMR and inelastic neutron scattering. The latter technique is available to this team through a partnership with Oak Ridge National Lab (ORNL). This program will provide the highest quality interdisciplinary research training to a diverse group of undergraduate, graduate and post-doctoral scientists, which will include training in new chemical synthesis methods and advanced magnetic measurement techniques. The Division of Materials Research and the Division of Chemistry provide support for this project.
* 非技术摘要 * 该奖项来自于对纳米科学与工程倡议(NSF 04-043,类别NIRT)的回应。它支持跨学科的研究工作,将调查化学合成的磁性纳米结构的量子动力学。磁性设备的小型化到这种尺寸对于磁信息处理的进步至关重要,磁信息处理是美国的重要产业。用于制造磁性纳米结构的传统技术具有严重的局限性。出于这个原因,人们对化学合成越来越感兴趣,这种化学合成提供了一种自下而上或基于分子的方法来组装磁性纳米结构-通常具有磁性结构的原子尺度控制。该项目将专注于磁化动力学以及纳米磁体的环境如何影响这些动力学。对于大磁体,这种耦合导致能量耗散或磁摩擦。对于磁性纳米结构,环境也会导致量子信息的丢失,称为退相干。该项目的一个重要目的是了解纳米磁体中能量耗散和退相干的微观机制,并开发合成策略以减轻某些环境影响,如退相干。磁性纳米结构的化学合成将与先进的磁性测量技术相结合,其中包括高速高灵敏度磁力测定、磁共振和中子散射。该计划将为本科生,研究生和博士后科学家的多元化群体提供最高质量的跨学科研究培训。学生将接受尖端化学合成和磁性测量技术的培训。材料研究部和化学部为该项目提供支持。*技术摘要 * 该奖项的结果从一个建议收到的响应纳米科学和工程倡议,NSF 04-043,类别NIRT。它支持一个跨学科的研究工作,将使用自下而上或基于分子的方法研究纳米尺寸的单分子磁体(SMM)的量子自旋动力学。这是一种强大的方法,其中磁性纳米结构是使用溶液方法化学合成的。了解纳米磁体的动力学对于技术应用是重要的。特别感兴趣的是,目前还知之甚少的是,自旋和它们的环境之间的耦合如何影响它们的动力学。在经典磁学中,这种耦合导致磁化进动的耗散和阻尼。在量子情况下,与环境的相互作用限制了自旋相干时间,导致量子信息的丢失。该研究计划将研究:量子磁化动力学;能量和角动量弛豫;和纳米磁体中的自旋激发。一个重要的目标是进一步了解纳米磁体中耗散和退相干的微观机制,并开发合成策略以减轻某些环境影响,如退相干。将采用以下实验技术:脉冲EPR、时间分辨和高灵敏度磁力测定、NMR和非弹性中子散射。后一种技术是通过与橡树岭国家实验室(ORNL)的合作提供给这个团队的。该计划将为本科生,研究生和博士后科学家提供最高质量的跨学科研究培训,其中包括新的化学合成方法和先进的磁性测量技术的培训。材料研究部和化学部为该项目提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Kent其他文献

Poster: AML-212: Treatment Free Remission (TFR) After Ceasing Venetoclax-Based Therapy in Responding Patients with Acute Myeloid Leukemia
  • DOI:
    10.1016/s2152-2650(21)01339-2
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chong Chyn Chua;Daneille Hammond;Andrew Kent;Ing Soo Tiong;Doen Ming Ong;Konopleva Marina;Daniel A. Pollyea;Courtney D. DiNardo;Andrew H. Wei
  • 通讯作者:
    Andrew H. Wei
Treatment-Related and De Novo Ccus Have Similar Molecular Features and Risk of Progression to Myeloid Malignancies
  • DOI:
    10.1182/blood-2024-201062
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Santos;Diana Abbott;Grace Bosma;Andrew Kent;Marc Schwartz;Christine M. McMahon;Jonathan Gutman;Daniel A Pollyea;Maria L Amaya
  • 通讯作者:
    Maria L Amaya
Technical Video: Bilateral Tubal Adhesiolysis With Cuff Salpingostomy
  • DOI:
    10.1016/j.jmig.2015.09.019
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fevzi Shakir;Andrew Kent
  • 通讯作者:
    Andrew Kent
Higher-Dose Venetoclax with Measurable Residual Disease-Guided Azacitidine Discontinuation in Newly Diagnosed Patients with Acute Myeloid Leukemia: Phase 2 Hiddav Study
  • DOI:
    10.1182/blood-2022-157802
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan A. Gutman;Amanda C. Winters;Andrew Kent;Maria L. Amaya;Christine M. McMahon;Clayton Smith;Craig T Jordan;Brett M. Stevens;Mohammad Minhajuddin;Shanshan Pei;Jeffrey Schowinsky;Jennifer Tobin;Kelly O'Brien;Angela Falco;Elizabeth Taylor;Constance Brecl;Phuong Ho;Connor Sohalski;Jessica Dell-Martin;Olivia Ondracek
  • 通讯作者:
    Olivia Ondracek
Results from a Clinical Study of the All-Oral Regimen of CC-486 (Oral Azacitidine) and Venetoclax for Newly Diagnosed and Relapsed and Refractory Acute Myeloid Leukemia
  • DOI:
    10.1182/blood-2024-202839
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Maria L Amaya;Christine M. McMahon;Marc Schwartz;Jonathan Gutman;Andrew Kent;Diana Abbott;Connor Sohalski;Jessica Dell-Martin;Ayele Belachew;Brett M Stevens;Craig T Jordan;Daniel A Pollyea
  • 通讯作者:
    Daniel A Pollyea

Andrew Kent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Kent', 18)}}的其他基金

Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
  • 批准号:
    2246358
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
GOALI: Spin-Orbit Torques From Magnetically Ordered Materials and Their Applications
GOALI:磁有序材料的自旋轨道扭矩及其应用
  • 批准号:
    2105114
  • 财政年份:
    2021
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
GOALI: Spin-Transfer in Magnetic Nanostructures
目标:磁性纳米结构中的自旋转移
  • 批准号:
    1610416
  • 财政年份:
    2016
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Multichamber Deposition and Surface Analysis System for Quantum Materials and Device Research
MRI:获取用于量子材料和器件研究的多室沉积和表面分析系统
  • 批准号:
    1531664
  • 财政年份:
    2015
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
GOALI: Spin-Transfer in Magnetic Nanostructures
目标:磁性纳米结构中的自旋转移
  • 批准号:
    1309202
  • 财政年份:
    2013
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
GOALI: Spin Transfer in Magnetic Nanostructures
GOALI:磁性纳米结构中的自旋转移
  • 批准号:
    1006575
  • 财政年份:
    2010
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
GOALI: Spin Transfer in Magnetic Nanostructures
GOALI:磁性纳米结构中的自旋转移
  • 批准号:
    0706322
  • 财政年份:
    2007
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
Nanoscale Spin Transfer Devices and Materials
纳米级自旋转移器件和材料
  • 批准号:
    0405620
  • 财政年份:
    2004
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
Acquisition of a High Frequency Measurement System for Magnetic Nanostructure Research and Student Training
采购用于磁性纳米结构研究和学生培训的高频测量系统
  • 批准号:
    0315609
  • 财政年份:
    2003
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
Acquisition of a Vector High Field Magnet System for Magnetic Nanostructure Research and Student Training
获取用于磁性纳米结构研究和学生培训的矢量高场磁体系统
  • 批准号:
    0114142
  • 财政年份:
    2001
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant

相似海外基金

NIRT: Spatial and Intensity Modulation of Light Emission in Fluorescent Molecules, Quantum Dots, and Nanowires
NIRT:荧光分子、量子点和纳米线中光发射的空间和强度调制
  • 批准号:
    0609249
  • 财政年份:
    2006
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
NIRT: Integrated Nanophotonics for Quantum Computation and Quantum Information Processing
NIRT:用于量子计算和量子信息处理的集成纳米光子学
  • 批准号:
    0507270
  • 财政年份:
    2005
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
NIRT: Collective Computation with Self Assembled Quantum Dots, Nanodiodes and Nanowires: A Novel Paradigm for Nanoelectronics
NIRT:使用自组装量子点、纳米二极管和纳米线进行集体计算:纳米电子学的新范式
  • 批准号:
    0506710
  • 财政年份:
    2005
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
NIRT: Semiconductor nanostructures and photonic crystal microcavities for quantum information processing at Terahertz frequencies
NIRT:用于太赫兹频率量子信息处理的半导体纳米结构和光子晶体微腔
  • 批准号:
    0507295
  • 财政年份:
    2005
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
NIRT: Metal-Dielectric Interfaces at the Nanoscale for Quantum Information and Microwave Devices
NIRT:用于量子信息和微波器件的纳米级金属-电介质界面
  • 批准号:
    0507227
  • 财政年份:
    2005
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
NIRT: Atom-Scale Silicon Integrated Circuits for Quantum Computation
NIRT:用于量子计算的原子级硅集成电路
  • 批准号:
    0404208
  • 财政年份:
    2004
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
NIRT: Spatially Ordered Self-Assembled Quantum Dot Gate Low Voltage/Power, High Speed Nanoscale Flash Memories
NIRT:空间有序自组装量子点门低电压/功耗高速纳米级闪存
  • 批准号:
    0304026
  • 财政年份:
    2003
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
NIRT: Quantum-State Transfer Between Photons and Nanostructures
NIRT:光子和纳米结构之间的量子态转移
  • 批准号:
    0304678
  • 财政年份:
    2003
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
NIRT: Formation and Properties of Spin-Polarized Quantum Dots in Magnetic Semiconductors by Controlled Variation of Magnetic Fields on the Nanoscale
NIRT:通过纳米尺度磁场的受控变化来形成磁性半导体中自旋极化量子点的形成和性质
  • 批准号:
    0210519
  • 财政年份:
    2002
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
NIRT: Nanoscale Quantum Systems: Excitations and Control
NIRT:纳米级量子系统:激发和控制
  • 批准号:
    0210575
  • 财政年份:
    2002
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了