GOALI: Spin-Transfer in Magnetic Nanostructures
目标:磁性纳米结构中的自旋转移
基本信息
- 批准号:1610416
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Abstract:This project brings together leading researchers from New York University and IBM with the aim of furthering the understanding and application of nanometer scale magnetic devices and materials. Magnetic nanostructures are widely used in technology with the most advanced applications found in information processing. Because of ever-increasing worldwide demands for data processing and storage, they form the backbone of a huge industry in the United States. Innovative research in this area at U.S industrial and university laboratories has maintained our world leadership in this vital area. It has been discovered that in miniature magnetic devices a direct electrical current can switch the direction of magnetization by a mechanism known as spin-transfer. This is an exciting development that may enable dramatic improvements in magnetic information processing and storage. There are important and fundamental questions about the nature of the interaction between the current and magnetization that this project will address through studies of magnetic nanostructures excited by spin-currents using unique high frequency measurement techniques available at NYU and magnetic imaging methods available at U.S. National Labs. This research will be integrated with the training of young scientists in this forefront area of magnetism research. Graduate and undergraduate students involved in this collaboration will gain experience by interactions between academia and industry and through exchanges between NYU and IBM. Their education will be enriched through exposure to a variety of perspectives, expertise and techniques present in an industrial setting. High school students will also participate in this research.Technical Abstract:This NSF-GOALI project brings together leading researchers in nanomagnetism from New York University and IBM with the aim of furthering the understanding of the physics of spin-transfer. Spin-transfer is a mechanism by which a spin-polarized current can reverse the magnetic orientation of a nanomagnet and induce magnetic excitations such as spin-waves. Understanding the nature of spin-transfer induced spin excitations is a very active area of present day research. The proposed research seeks to advance the understanding and application of two types of collective spin excitations that are generated by the spin-transfer interaction: magnetic solitons, which are localized spin excitations excited in nanometer scale electric contacts to magnetic thin films, and superspin currents excited in easy-plane magnetic layers. Fundamental questions regarding the lifetime, dynamics and degree of coherence of magnetic solitons will be addressed experimentally in samples in which soliton dynamics can be controlled with external perturbations (e.g. applied fields and currents). Scanning transmission x-ray microscopy will be used to image the magnetization dynamics to provide direct information on the nature of the current-induced spin excitations. Parallel theoretical work will explore the effects of temperature and other perturbations, as well as the effects of confined geometries, on soliton lifetimes and dynamics, and will explore transitions between nontopological and topological states. Superspin currents will be explored in samples consisting of proximal nanocontacts for the injection and detection of spin-currents. These experiments will aim to demonstrate and evaluate the efficiently of this newly proposed mechanism of spin transport. Graduate and undergraduate students involved in this collaboration will gain experience by interactions between academia and industry and through student exchanges between NYU and IBM. Their education will be enriched through this integrated experimental and theoretical project, as well as the variety of perspectives, expertise and techniques present in an industrial setting. High school students will also be encouraged to participate in this research project.
非技术摘要:该项目汇集了来自纽约大学和IBM的主要研究人员,旨在进一步理解和应用纳米尺度的磁性器件和材料。磁性纳米结构被广泛应用于信息处理中最先进的应用技术。由于全球对数据处理和存储的需求不断增长,它们构成了美国一个巨大行业的支柱。美国工业和大学实验室在这一领域的创新研究保持了我们在这一重要领域的世界领先地位。已经发现,在微型磁性器件中,直流电可以通过称为自旋转移的机制来切换磁化方向。这是一个令人兴奋的发展,可能使磁信息处理和存储的显着改善。有关于电流和磁化之间的相互作用的性质的重要和基本的问题,该项目将通过使用独特的高频测量技术在纽约大学和磁成像方法在美国可用的自旋电流激发的磁性纳米结构的研究解决。这项研究将与磁学研究这一前沿领域的年轻科学家的培训相结合。参与这项合作的研究生和本科生将通过学术界和工业界之间的互动以及纽约大学和IBM之间的交流获得经验。他们的教育将通过接触各种观点,专业知识和技术在工业环境中得到丰富。技术摘要:这个NSF-GOALI项目汇集了来自纽约大学和IBM的纳米磁学领域的领先研究人员,旨在进一步理解自旋转移的物理学。自旋转移是一种机制,通过该机制,自旋极化电流可以反转纳米磁体的磁性取向并诱导诸如自旋波的磁性激发。理解自旋转移诱导的自旋激发的本质是当今研究的一个非常活跃的领域。拟议的研究旨在促进理解和应用的两种类型的集体自旋激发所产生的自旋转移相互作用:磁孤子,这是本地化的自旋激发在纳米尺度的电接触的磁性薄膜,和超自旋电流激发在易平面磁性层。关于磁孤子的寿命,动力学和相干程度的基本问题将在实验中解决的样品中,孤子动力学可以控制与外部扰动(例如,施加的字段和电流)。扫描透射X射线显微镜将用于对磁化动力学进行成像,以提供有关电流诱导自旋激发性质的直接信息。平行的理论工作将探讨温度和其他扰动的影响,以及封闭的几何形状的影响,对孤子的寿命和动力学,并将探讨非拓扑和拓扑状态之间的转换。超自旋电流将探讨在样品组成的近端nanocontacts注入和检测的自旋电流。这些实验旨在证明和评估这种新提出的自旋输运机制的有效性。参与此次合作的研究生和本科生将通过学术界和工业界之间的互动以及纽约大学和IBM之间的学生交流获得经验。他们的教育将通过这个综合的实验和理论项目,以及在工业环境中存在的各种观点,专业知识和技术来丰富。高中生也将被鼓励参加这个研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Kent其他文献
Poster: AML-212: Treatment Free Remission (TFR) After Ceasing Venetoclax-Based Therapy in Responding Patients with Acute Myeloid Leukemia
- DOI:
10.1016/s2152-2650(21)01339-2 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Chong Chyn Chua;Daneille Hammond;Andrew Kent;Ing Soo Tiong;Doen Ming Ong;Konopleva Marina;Daniel A. Pollyea;Courtney D. DiNardo;Andrew H. Wei - 通讯作者:
Andrew H. Wei
Treatment-Related and De Novo Ccus Have Similar Molecular Features and Risk of Progression to Myeloid Malignancies
- DOI:
10.1182/blood-2024-201062 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Jennifer Santos;Diana Abbott;Grace Bosma;Andrew Kent;Marc Schwartz;Christine M. McMahon;Jonathan Gutman;Daniel A Pollyea;Maria L Amaya - 通讯作者:
Maria L Amaya
Technical Video: Bilateral Tubal Adhesiolysis With Cuff Salpingostomy
- DOI:
10.1016/j.jmig.2015.09.019 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Fevzi Shakir;Andrew Kent - 通讯作者:
Andrew Kent
Higher-Dose Venetoclax with Measurable Residual Disease-Guided Azacitidine Discontinuation in Newly Diagnosed Patients with Acute Myeloid Leukemia: Phase 2 Hiddav Study
- DOI:
10.1182/blood-2022-157802 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Jonathan A. Gutman;Amanda C. Winters;Andrew Kent;Maria L. Amaya;Christine M. McMahon;Clayton Smith;Craig T Jordan;Brett M. Stevens;Mohammad Minhajuddin;Shanshan Pei;Jeffrey Schowinsky;Jennifer Tobin;Kelly O'Brien;Angela Falco;Elizabeth Taylor;Constance Brecl;Phuong Ho;Connor Sohalski;Jessica Dell-Martin;Olivia Ondracek - 通讯作者:
Olivia Ondracek
Results from a Clinical Study of the All-Oral Regimen of CC-486 (Oral Azacitidine) and Venetoclax for Newly Diagnosed and Relapsed and Refractory Acute Myeloid Leukemia
- DOI:
10.1182/blood-2024-202839 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Maria L Amaya;Christine M. McMahon;Marc Schwartz;Jonathan Gutman;Andrew Kent;Diana Abbott;Connor Sohalski;Jessica Dell-Martin;Ayele Belachew;Brett M Stevens;Craig T Jordan;Daniel A Pollyea - 通讯作者:
Daniel A Pollyea
Andrew Kent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Kent', 18)}}的其他基金
Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
- 批准号:
2246358 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
GOALI: Spin-Orbit Torques From Magnetically Ordered Materials and Their Applications
GOALI:磁有序材料的自旋轨道扭矩及其应用
- 批准号:
2105114 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Acquisition of a Multichamber Deposition and Surface Analysis System for Quantum Materials and Device Research
MRI:获取用于量子材料和器件研究的多室沉积和表面分析系统
- 批准号:
1531664 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
GOALI: Spin-Transfer in Magnetic Nanostructures
目标:磁性纳米结构中的自旋转移
- 批准号:
1309202 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
GOALI: Spin Transfer in Magnetic Nanostructures
GOALI:磁性纳米结构中的自旋转移
- 批准号:
1006575 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
GOALI: Spin Transfer in Magnetic Nanostructures
GOALI:磁性纳米结构中的自旋转移
- 批准号:
0706322 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
FRG: NIRT: Quantum Spin Dynamics in Molecular Nanomagnets
FRG:NIRT:分子纳米磁体中的量子自旋动力学
- 批准号:
0506946 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Nanoscale Spin Transfer Devices and Materials
纳米级自旋转移器件和材料
- 批准号:
0405620 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Acquisition of a High Frequency Measurement System for Magnetic Nanostructure Research and Student Training
采购用于磁性纳米结构研究和学生培训的高频测量系统
- 批准号:
0315609 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Acquisition of a Vector High Field Magnet System for Magnetic Nanostructure Research and Student Training
获取用于磁性纳米结构研究和学生培训的矢量高场磁体系统
- 批准号:
0114142 - 财政年份:2001
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
镍催化偶联反应中高自旋镍物种电子转移模式的理论研究
- 批准号:22303010
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
自旋转移矩磁随机存储器的单粒子效应和抗辐射加固技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RuO2基反铁磁隧道结中的自旋转移力矩和隧道磁阻的理论研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柔性可转移Fe3O4/聚合物薄膜异质结构的制备及其反相边界密度与自旋极化率的研究
- 批准号:12164016
- 批准年份:2021
- 资助金额:38 万元
- 项目类别:地区科学基金项目
基于自旋中心转移机制的alfa-多(类)卤代羰基化合物的逐级可控转化研究
- 批准号:22171253
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
基于非局域纳米振荡器的三重态超导关联净自旋性质研究
- 批准号:12004329
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于自旋无能隙半导体的磁性隧道二极管研究
- 批准号:12004021
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
锰氧化物及其异质结中自旋玻璃态和自旋团簇玻璃态的研究
- 批准号:52002112
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于自旋轨道电荷转移增强的系间窜跃调控机制(SOCT-ISC)的新型光敏试剂的构建及肿瘤光动力治疗研究
- 批准号:22004081
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Spin-Exchange and Energy Transfer at Hybrid Molecular/Lanthanide Nanoparticle Interfaces to Control Triplet Excitons
混合分子/稀土纳米颗粒界面的自旋交换和能量转移控制三重态激子
- 批准号:
EP/Y015584/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Novel designs of Spin Torque Transfer Magnetic Random Access Memory (STT-MRAM) devices
自旋转矩传递磁性随机存取存储器(STT-MRAM)器件的新颖设计
- 批准号:
561528-2021 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Idea to Innovation
Charge transfer contributions in molecular spin Qubits
分子自旋量子位中的电荷转移贡献
- 批准号:
564004-2021 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards
First-principles modelling of spin transfer and magnetism at photo-excited two-dimensional magnets and van der Waals heterostructures
光激发二维磁体和范德华异质结构的自旋转移和磁性的第一原理建模
- 批准号:
448002124 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Research Grants
Controlling Spin-Exchange Coupling and Energy Transfer at the Organic-Lanthanide Nanoparticle Interface
控制有机-镧系元素纳米粒子界面的自旋交换耦合和能量转移
- 批准号:
2482376 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Studentship
Understanding Spin-Transfer Torques using Ab-initio Simulations
使用从头算模拟了解自旋转移扭矩
- 批准号:
438494688 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Research Grants
Creating Functional Nanocrystal-Molecule Interfaces for Spin-triplet Energy Transfer
创建用于自旋三重态能量转移的功能纳米晶体分子界面
- 批准号:
2003735 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Establishment of evaluation method for Neel spin orbit torque in C11b Cr2Al via magnetic transfer
磁传递评估C11b Cr2Al中Neel自旋轨道力矩方法的建立
- 批准号:
20K15109 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Information Transfer in Heisenberg Spin Chains
海森堡自旋链中的信息传输
- 批准号:
2003287 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Light Modulation of Charge Transfer-Induced Spin-Transfer Processes in Single Molecules for Quantum Information Science
用于量子信息科学的单分子中电荷转移诱导的自旋转移过程的光调制
- 批准号:
1956301 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant