Variational Methods in Singular Geometry
奇异几何中的变分法
基本信息
- 批准号:2105226
- 负责人:
- 金额:$ 45.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Physical phenomena tend to obey the least action principle, namely moving in trajectories that make the action locally stationary. If the action is given by Dirichlet energy, then the stationary points are in some cases geodesics (shortest paths), and in other cases harmonic functions and various generalizations of these notions familiar from elementary physics. In this project, the PI will study stationary solutions either related to harmonic maps obtained by minimizing Dirichlet energy or best Lipschitz maps (sometimes called infinity harmonic) obtained by minimizing Lipschitz constants. Both problems have interesting applications to geometric topology and group theory. The project also includes significant training and mentoring of junior mathematicians (students, post-doctoral researchers, junior faculty) The work of Eells-Sampson in the 60's launched an explosion of research for harmonic maps between Riemannian manifolds. Many important applications followed in minimal surface theory, Kaehler geometry and rigidity of group actions on manifolds among others. More recently, the seminal work of Gromov-Schoen and Korevaar-Schoen on harmonic maps to metric space targets initiated major progress in understanding phenomena associated with singular spaces, like rigidity of groups acting on buildings and the completion of Teichmueller space. In the first part of the project PI will study several problems in harmonic map theory for singular geometry with applications to Teichmueller theory. In the second part PI will study the calculus of variations of functionals associated with the sup-norm of the gradient of maps between Riemannian manifolds. Such functionals yield solutions of fully non-linear degenerate PDE's with very challenging regularity properties and whose singular set gives geometric realizations of topological objects like geodesic foliations and laminations related to Thurston theory. The PI will also train graduate students and maintains a robust mentoring program for all junior researchers in his department. The latter provides guidance and support to post-doctoral researchers and junior faculty on a range of issues related to professional development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物理现象倾向于服从最小作用原理,即沿着使作用局部静止的轨迹运动。如果作用是由狄利克雷能量给出的,那么在某些情况下,静止点是测地线(最短路径),在其他情况下,是调和函数和这些概念的各种推广,这些概念从基础物理中熟悉。在这个项目中,PI将研究通过最小化Dirichlet能量获得的调和映射或通过最小化Lipschitz常数获得的最佳Lipschitz映射(有时称为无穷谐波)相关的平稳解。这两个问题在几何拓扑学和群论中都有有趣的应用。该项目还包括对初级数学家(学生、博士后研究人员、初级教员)的重要培训和指导。Eells-Sampson在60年代的工作引发了黎曼流形之间谐波映射研究的爆发。在最小曲面理论、Kaehler几何和流形上群作用的刚性等方面有许多重要的应用。最近,Gromov-Schoen和korevar - schoen关于度量空间目标的调和映射的开创性工作在理解与奇异空间相关的现象方面取得了重大进展,例如作用于建筑物的群的刚性和Teichmueller空间的完成。在项目的第一部分,PI将研究奇异几何调和映射理论中的几个问题及其在Teichmueller理论中的应用。在第二部分中,PI将研究与黎曼流形之间映射的梯度的上范数相关的泛函变分的演算。这些泛函给出了具有非常具有挑战性的正则性的完全非线性退化PDE的解,其奇异集给出了拓扑对象的几何实现,如与Thurston理论相关的测地叶状和层状。PI还将培训研究生,并为他所在部门的所有初级研究人员维持一个健全的指导计划。后者在与专业发展有关的一系列问题上为博士后研究人员和初级教师提供指导和支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Daskalopoulos其他文献
An application of transversality to the topology of the moduli space of stable bundles
横截性在稳定丛模空间拓扑中的应用
- DOI:
10.1016/0040-9383(94)e0014-b - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Georgios Daskalopoulos;Karen K. Uhlenbeck - 通讯作者:
Karen K. Uhlenbeck
Essential regularity of the model space for the Weil–Petersson metric
Weil-Petersson 度量模型空间的基本规律
- DOI:
10.1515/crelle-2016-0028 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Georgios Daskalopoulos;Chikako Mese - 通讯作者:
Chikako Mese
Fixed point and rigidity theorems for harmonic maps into NPC spaces
调和映射到 NPC 空间的不动点和刚性定理
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Georgios Daskalopoulos;Chikako Mese - 通讯作者:
Chikako Mese
On the Singular Set of Harmonic Maps into Dm-complexes
关于 Dm 复形调和映射的奇异集
- DOI:
10.1090/memo/1129 - 发表时间:
2016 - 期刊:
- 影响因子:1.1
- 作者:
Georgios Daskalopoulos;Chikako Mese - 通讯作者:
Chikako Mese
The Use and Efficacy of FFR-CT: Real-World Multicenter Audit of Clinical Data With Cost Analysis.
FFR-CT 的使用和功效:通过成本分析对临床数据进行真实多中心审核。
- DOI:
10.1016/j.jcmg.2023.02.005 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tarun K. Mittal;Sandeep S. Hothi;Vinod Venugopal;John Taleyratne;David O’Brien;Kazi Adnan;J. Sehmi;Georgios Daskalopoulos;Aparna S. Deshpande;S. Elfawal;Vinoda Sharma;Rajai A. Shahin;Mengshi Yuan;Dominik Schlosshan;Andrew Walker;Saif;I. Sunderji;Sidhesh B. Wagh;Jocelyn Chow;Mohammed Masood;Sumeet Sharma;Sharad Agrawal;C. Duraikannu;E. McAlindon;Saeed Mirsadraee;Edward D. Nicol;A. D. Kelion - 通讯作者:
A. D. Kelion
Georgios Daskalopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Daskalopoulos', 18)}}的其他基金
Harmonic Maps Between Singular Spaces, Gauge Theory, and Applications
奇异空间、规范理论和应用之间的调和图
- 批准号:
1608764 - 财政年份:2016
- 资助金额:
$ 45.46万 - 项目类别:
Continuing Grant
Harmonic maps between singular spaces, Gauge theory and applications
奇异空间之间的调和映射、规范理论及其应用
- 批准号:
1308708 - 财政年份:2013
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Gauge Theory, Harmonic Maps to Singular Spaces, and Applications to Topology
规范理论、奇异空间调和图以及拓扑应用
- 批准号:
0604930 - 财政年份:2006
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Gauge Theory, Harmonic Maps to Singular Spaces and Applications to Topology
规范理论、奇异空间调和图及其在拓扑中的应用
- 批准号:
0204191 - 财政年份:2002
- 资助金额:
$ 45.46万 - 项目类别:
Continuing Grant
Moduli of Vector Bundles on Riemann Surfaces and Applications to Topology
黎曼曲面上向量丛的模及其在拓扑中的应用
- 批准号:
9803606 - 财政年份:1998
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology and Geometry of Moduli Spaces of Vectro Bundles
数学科学:Vectro 丛模空间的拓扑和几何
- 批准号:
9504297 - 财政年份:1995
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology and Geometry of Moduli of Vector Bundles on Riemann Surfaces
数学科学:黎曼曲面上向量丛模的拓扑和几何
- 批准号:
9303494 - 财政年份:1993
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RUI: Multiscale Methods, Singular Limits, and Spectral Problems Related to Materials Science
RUI:与材料科学相关的多尺度方法、奇异极限和谱问题
- 批准号:
2110036 - 财政年份:2021
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Studies on singular Hermitian metrics via L2 theoretic methods and their applications to algebraic geometry
L2理论方法研究奇异埃尔米特度量及其在代数几何中的应用
- 批准号:
21K20336 - 财政年份:2021
- 资助金额:
$ 45.46万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
- 批准号:
2031213 - 财政年份:2021
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
- 批准号:
2054184 - 财政年份:2021
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Numerical Methods for Optimal Transport with Applications to Manifold Learning on Singular Spaces
最优传输的数值方法及其在奇异空间流形学习中的应用
- 批准号:
2000128 - 财政年份:2020
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Novel Finite Element Methods for Three-Dimensional Anisotropic Singular Problems
三维各向异性奇异问题的新颖有限元方法
- 批准号:
1819041 - 财政年份:2018
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant
Development of rigorous computation methods for singular trajectories in dynamical systems
动力系统中奇异轨迹的严格计算方法的开发
- 批准号:
17K14235 - 财政年份:2017
- 资助金额:
$ 45.46万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Neural Networks Deep Learning Methods Utilizing Singular Regions
利用奇异区域的神经网络深度学习方法
- 批准号:
16K00342 - 财政年份:2016
- 资助金额:
$ 45.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel nonlinear functional analysis methods for singular and impulsive boundary value problems
用于奇异和脉冲边值问题的新型非线性泛函分析方法
- 批准号:
FT140101112 - 财政年份:2015
- 资助金额:
$ 45.46万 - 项目类别:
ARC Future Fellowships
SI2-SSE: Enhancing the PReconditioned Iterative MultiMethod Eigensolver Software with New Methods and Functionality for Eigenvalue and Singular Value Decomposition (SVD) Problems
SI2-SSE:通过针对特征值和奇异值分解 (SVD) 问题的新方法和功能增强预条件迭代多方法特征求解器软件
- 批准号:
1440700 - 财政年份:2014
- 资助金额:
$ 45.46万 - 项目类别:
Standard Grant