Probing Near-Symplectic 4-Manifolds and Contact 3-Manifolds with Seiberg-Witten Theory
用 Seiberg-Witten 理论探测近辛 4 流形和接触 3 流形
基本信息
- 批准号:2105445
- 负责人:
- 金额:$ 15.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gauge theory describes and exploits the symmetries of nature; among other things it forms the foundation of classical electrodynamics and quantum physics. Symplectic geometry describes the dynamics of nature; among other things it forms the foundation of classical mechanics. Our universe seemingly has four dimensions, three spatial and one time, and it has some curvature, but we do not know exactly what the global picture is. Motions of particles in our universe can be cyclical, but we do not always know how many such periodic trajectories these particles can have. The goal of this project is to use both gauge theory and symplectic geometry in tandem to detect the possible smooth shapes of our universe and to probe the evolution of systems that can arise in said universe, and to develop these mathematical tools further in order to be more efficient in our calculations. Especially, the PI will check whether certain dynamical systems have infinitely many periodic orbits, using the gauge-theoretic “Seiberg-Witten monopoles” and the symplectic-style “Reeb orbits”. The broader impacts of this pursuit involve mentoring students and outreach.The classification of smooth 4-manifolds and dynamics of Reeb vector fields on 3-manifolds have been long-sought out goals in the community, with much progress. This project will be able to contribute with new and refined methods, by extending and exploiting the relations between Seiberg-Witten solutions and pseudoholomorphic curves and Reeb orbits. The Seiberg-Witten invariants of 4-manifolds may be recovered by suitable counts of said curves and orbits, using 2-forms that are symplectic almost everywhere. The PI intends to use this transcription and these near-symplectic 2-forms to probe the structure of the SW invariants, and to search for diffeomorphisms between two homeomorphic symplectic 4-manifolds that are known to become diffeomorphic after a blow-up. In 3 dimensions the PI intends to give quantitative refinements to the Weinstein conjecture that asserts the existence of periodic Reeb orbits on every closed contact 3-manifold, by re-analyzing and extending the proof of said conjecture to the case of certain non-closed contact 3-manifolds using a newly developed SW-Floer homology theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
规范理论描述并利用了自然界的对称性;除其他外,它构成了经典电动力学和量子物理学的基础。辛几何描述了自然界的动力学;除其他外,它构成了经典力学的基础。我们的宇宙似乎有四个维度,三个空间和一个时间,它有一些曲率,但我们不知道确切的全球图片是什么。宇宙中粒子的运动可以是周期性的,但我们并不总是知道这些粒子可以有多少这样的周期性轨迹。该项目的目标是同时使用规范理论和辛几何来探测我们宇宙的可能光滑形状,并探测可能出现在所述宇宙中的系统的演化,并进一步开发这些数学工具,以便在我们的计算中更有效。特别是,PI将检查某些动力系统是否有无穷多个周期轨道,使用规范理论的“Seiberg-Witten单极”和辛式的“Reeb轨道”。这一追求的更广泛的影响涉及指导学生和推广。光滑4-流形的分类和3-流形上的Reeb向量场的动力学一直是社区长期寻求的目标,并取得了很大进展。该项目将能够通过扩展和利用Seiberg-Witten解与伪全纯曲线和Reeb轨道之间的关系,为新的和改进的方法做出贡献。4-流形的Seiberg-Witten不变量可以通过对所述曲线和轨道的适当计数来恢复,使用几乎处处辛的2-形式。PI打算使用这种转录和这些近辛2-形式来探测SW不变量的结构,并搜索两个同胚辛4-流形之间的同胚,这两个同胚辛4-流形已知在爆破后变成同胚。在三维空间中,PI打算对温斯坦猜想进行定量改进,该猜想断言在每个闭接触三维流形上存在周期性Reeb轨道,利用新发展的SW-流形,重新分析并推广了上述猜想的证明,弗洛尔同源理论。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查的支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris Gerig其他文献
Seiberg-Witten Invariants and Superconducting Vortices
Seiberg-Witten 不变量和超导涡旋
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
S. Cecotti;Chris Gerig;C. Vafa - 通讯作者:
C. Vafa
Lagrangian torus invariants using $ECH = SWF$
使用 $ECH = SWF$ 的拉格朗日环面不变量
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chris Gerig - 通讯作者:
Chris Gerig
No homotopy 4–sphere invariants using
ECH=SWF
无同伦 4-球体不变量使用
- DOI:
10.2140/agt.2021.21.2543 - 发表时间:
2019 - 期刊:
- 影响因子:0.7
- 作者:
Chris Gerig - 通讯作者:
Chris Gerig
Generic Transversality for Unbranched Covers of Closed Pseudoholomorphic Curves
闭伪全纯曲线的无分支覆盖的一般横截性
- DOI:
10.1002/cpa.21679 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Chris Gerig;C. Wendl - 通讯作者:
C. Wendl
Chris Gerig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chris Gerig', 18)}}的其他基金
Probing Near-Symplectic 4-Manifolds and Contact 3-Manifolds with Seiberg-Witten Theory
用 Seiberg-Witten 理论探测近辛 4 流形和接触 3 流形
- 批准号:
2147753 - 财政年份:2021
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
相似国自然基金
CRISPR-Cas精准识别协同NEAR指数信号放大一体化生物传感体系构建用于胰腺癌多重基因突变检测方法研究
- 批准号:32371521
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
可编程CRISPR/Cas体系诱导NEAR多重扩增结合上转换荧光纳米探针用于病原体高灵敏可视化检测方法研究
- 批准号:32001786
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于NEAR放大及发射光叠加信号分析的高灵敏可视化双食源性病毒检测方法研究
- 批准号:31701683
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
赌博游戏中near-miss 效应发生的认知神经机制及其病理研究
- 批准号:31400908
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Near完美非线性函数及有关课题研究
- 批准号:11226282
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
- 批准号:
EP/Y007778/1 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Research Grant
Effects of transverse spin and chirality of light by particles trapping near the evanescent field
倏逝场附近捕获的粒子对光的横向自旋和手性的影响
- 批准号:
24K17626 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Collaborative R&D
Tuning near-infrared photosynthesis
调节近红外光合作用
- 批准号:
BB/X015858/1 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Research Grant
Tuning near-infrared photosynthesis
调节近红外光合作用
- 批准号:
BB/X015955/1 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Research Grant
Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
- 批准号:
2345157 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
CAREER: Towards 3D Omnidirectional and Efficient Wireless Power Transfer with Controlled 2D Near-Field Coil Array
职业:利用受控 2D 近场线圈阵列实现 3D 全向高效无线功率传输
- 批准号:
2338697 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Continuing Grant
Near-infrared GaN quantum cascade laser for the next-generation self-driving car
用于下一代自动驾驶汽车的近红外GaN量子级联激光器
- 批准号:
23K20955 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)