Collaborative Research: CNS: Medium: Energy Centric Wireless Sensor Node System for Smart Farms

合作研究:CNS:媒介:用于智能农场的以能源为中心的无线传感器节点系统

基本信息

项目摘要

Animal agriculture has intensified over the past several decades, and animals are managed increasingly as large groups. As animals are often located remotely on large expanses of pasture, continuous monitoring of animal health and well-being is labor-intensive and challenging. This project aims to develop a solar sensor-based smart farm Internet-of-Things network, which is versatile, reliable, and robust to cyberattacks for smart animal monitoring and to demonstrate its operation and practicality on real farms. The solar sensor network will leverage low-power, wide- area networking to enable animal care personnel to monitor the behavior and health of cattle remotely through the Internet. The proposed research will provide fundamental advances to building an energy-efficient, scalable, communication-efficient animal farm system, while ensuring high monitoring quality under uncertain, dynamic, and hostile smart farm environments. The success of this project will contribute to a farm management system by accurately observing, measuring and responding to variabilities in animal agriculture systems.The proposed work will design an energy-centric solution that actively schedules communication and computation to minimize energy waste in energy harvesting contexts. The proposed sensor node will monitor biometrics, acceleration, and location of animals and is powered by solar energy. The proposal further builds a physical and medium-access communication layer that is actively aware of the energy-mismatch between the low-energy sensors and the more capable LoRa (Long Range) gateways. The adoption of wireless technologies introduces cybersecurity vulnerabilities, and hence, cybersecurity is another major design objective of the proposed system by leveraging belief models and deep learning techniques while maintaining high quality monitoring services. The proposed sensor network will be tested at Virginia Tech’s farm testbeds, which have been designed to test and showcase such technologies for pastured livestock. The research will also be beneficial to the fields of semiconductor devices, embedded systems, Internet-of-Things (IoT) devices, wireless communications including 5G and beyond, robust machine/deep learning, cybersecurity, statistical signal detection, and agricultural production. The project will pioneer transformative research to increase productivity of animal agriculture and allow for real-world testing of advancements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,畜牧业得到了加强,动物越来越多地被作为大群体进行管理。由于动物往往位于偏远的大片牧场上,持续监测动物的健康和福祉是劳动密集型和挑战性的。本项目旨在开发一个基于太阳能传感器的智能农场物联网网络,该网络具有通用性、可靠性和对网络攻击的健壮性,用于智能动物监控,并在实际农场上展示其操作和实用性。太阳能传感器网络将利用低功率、广域网络,使动物护理人员能够通过互联网远程监测牛的行为和健康。这项拟议的研究将为建立一个节能、可扩展、通信高效的动物养殖场系统提供根本性的进步,同时确保在不确定、动态和恶劣的智能农场环境下的高监控质量。该项目的成功将有助于通过准确地观察、测量和响应畜牧业系统中的变化来建立农场管理系统。拟议的工作将设计一个以能源为中心的解决方案,该解决方案将主动调度通信和计算,以最大限度地减少能源收集环境中的能源浪费。建议的传感器节点将监测动物的生物特征、加速度和位置,并由太阳能供电。该提议进一步建立了一个物理和中等接入通信层,该层主动意识到低能量传感器和功能更强的LORA(远程)网关之间的能量不匹配。无线技术的采用带来了网络安全漏洞,因此,网络安全是拟议系统的另一个主要设计目标,它利用信念模型和深度学习技术,同时保持高质量的监测服务。拟议的传感器网络将在弗吉尼亚理工大学的农场试验台上进行测试,该试验台旨在测试和展示用于牧场牲畜的此类技术。这项研究还将有益于半导体设备、嵌入式系统、物联网(IoT)设备、包括5G及以上的无线通信、稳健的机器/深度学习、网络安全、统计信号检测和农业生产等领域。该项目将开创变革性研究的先河,以提高畜牧业的生产率,并允许对进步进行现实世界的测试。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Open-Source Wearable Sensors for Behavioral Analysis of Sheep Undergoing Heat Stress
用于对遭受热应激的绵羊进行行为分析的开源可穿戴传感器
  • DOI:
    10.3390/app13169281
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reis, Barbara Roqueto;Nguyen, Tien;Sujani, Sathya;White, Robin R.
  • 通讯作者:
    White, Robin R.
Brief research report: Photoplethysmography pulse sensors designed to detect human heart rates are ineffective at measuring horse heart rates
简要研究报告:旨在检测人类心率的光电体积描记法脉冲传感器在测量马心率方面无效
  • DOI:
    10.3389/fanim.2023.1103812
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naughton, Samantha G.;Gleason, Claire B.;Leeth, Caroline M.;White, Robin R.
  • 通讯作者:
    White, Robin R.
Wireless Sensor Node System to Monitor Pig Activities for Behavior Classification
无线传感器节点系统监控猪的活动以进行行为分类
Effect of Power Conversion Efficiency of the RF Energy Harvester on the Security and Data Rate of the Self-Sustainable IoT Devices
射频能量采集器的功率转换效率对自我可持续物联网设备的安全性和数据速率的影响
  • DOI:
    10.1145/3590777.3590796
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lohrabi Pour, Fariborz;Ha, Dong Sam
  • 通讯作者:
    Ha, Dong Sam
Brief research report: Evaluation of photoplethysmographic heart rate monitoring for sheep under heat-stressed conditions
简要研究报告:热应激条件下绵羊光电体积描记法心率监测评价
  • DOI:
    10.3389/fanim.2022.1046557
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    dos Reis, Barbara R.;White, Robin R.
  • 通讯作者:
    White, Robin R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dong Ha其他文献

Development Trend of Liquid Hydrogen-Fueled Rocket Engines (Part 2: Core Technologies)
液氢火箭发动机发展趋势(二:核心技术)

Dong Ha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dong Ha', 18)}}的其他基金

SaTC: CORE: Medium: Collaborative: Energy-Harvested Security for the Internet of Things
SaTC:核心:媒介:协作:物联网的能量收集安全
  • 批准号:
    1704176
  • 财政年份:
    2017
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
A New Approach to Design-for-Testability (DFT) Using Ultra Wideband and Wireless Communication Techniques
使用超宽带和无线通信技术的可测试性设计 (DFT) 新方法
  • 批准号:
    0811706
  • 财政年份:
    2008
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Continuing Grant
CRI: Development of Cell Libraries to Support VLSI Research and Education
CRI:开发细胞文库以支持 VLSI 研究和教育
  • 批准号:
    0551652
  • 财政年份:
    2006
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Continuing Grant
Development of an Efficient Method for Test Data Compression
开发一种有效的测试数据压缩方法
  • 批准号:
    9730372
  • 财政年份:
    1998
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Infrastructure for VLSI Circuit Testing: Development of a Fault Simulator and Test Generators for Industrial Circuits
VLSI 电路测试基础设施:工业电路故障模拟器和测试发生器的开发
  • 批准号:
    9632625
  • 财政年份:
    1996
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Software Capitalization: CAD Tools for VLSI Circuit Testing
软件资本化:用于 VLSI 电路测试的 CAD 工具
  • 批准号:
    9310115
  • 财政年份:
    1993
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Research Initiation: Study of a New Built-in Self-Test Architecture
研究启动:新型内置自测试架构的研究
  • 批准号:
    8809164
  • 财政年份:
    1988
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 57.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了