Glow Discharge Optical Emission Coded Aperture Spectral Imaging Elemental Mapping (GOCAEM) for Ultrahigh Throughput 3D Surface Analysis of Nanoscale Materials

用于纳米级材料超高通量 3D 表面分析的辉光放电光学发射编码孔径光谱成像元素测绘 (GOCAEM)

基本信息

  • 批准号:
    2108359
  • 负责人:
  • 金额:
    $ 41.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Gerardo Gamez at Texas Tech University is studying and developing Glow Discharge Optical Emission Coded Aperture Spectral Imaging Elemental Mapping (GOCAEM), which is a novel method for analyzing and measuring chemical elements on surfaces. A variety of fields, including materials, geological, and biological sciences, use elemental mapping to gain an improved understanding of naturally occurring systems or improve performance of manufactured systems. However, current elemental mapping techniques suffer from lengthy sample analysis times or accessibility restrictions, which limits their use to a small group of systems. GOCAEM leverages the ability of glow-discharge spectroscopy to overcome such limitations (1000x faster vs typical EM techniques) and incorporates compressed sensing spectral imaging strategies to offer greatly improved abilities, offering advantages that allow analysis of challenging systems, such as nanoscale materials. Thus, fast, routine diagnostic three-dimensional elemental mapping of many nano-structured surface systems is a real possibility with this approach. Outcomes from the project will have an impact on many fields, especially those relying on ultra-thin films and nanoparticle materials, which is in alignment with serving the needs and vision of the National Nanotechnology Initiative. The project will take place at a designated Hispanic Serving Institution, which provides an uncommon opportunity to reach underrepresented minorities in science, technology, engineering, and mathematics (STEM). Multidisciplinary training opportunities for graduate and undergraduate researchers include those with instrument development, plasma spectroscopy, imaging, nanomaterials characterization, and surface analysis. The goal of this project is to enable elemental mapping (EM) of nanomaterials via glow discharge optical emission spectroscopy (GDOES). GDOES has been initially developed as an alternative elemental mapping technique that offers significant (several orders of magnitude) improvement in analysis time compared to typical techniques. GDOES also gives access to significantly faster three-dimensional elemental mapping protocols through sputter sampling and its high-throughput two-dimensional elemental mapping. Nevertheless, the depth resolution is still limited by the two-dimensional elemental mapping time; thus, significant gains must still be achieved to reach the highest depth resolution (~nm) and limits of detection offered by GDOES. We will develop Glow Discharge Optical Emission Coded Aperture Spectral Imaging Elemental Mapping (GOECAEM), where hyperspectral imaging enabled by compressed sensing (CS) strategies will achieve the required gains in depth resolution and limits of detection. CS is a recently developed measurement strategy that represents a paradigm shift in sampling. It allows employment of compression protocols (typically reserved for software data processing) during the data acquisition step: this results in significantly improved data collection efficiency and measurement time required. Coded aperture compressed sensing hyperspectral imaging will be developed and implemented using spatial light modulators and array detectors. As such, high throughput three-dimensional elemental mapping of nano-structured materials will be sought here with the development of methods for two different types of materials. The three main objectives of the proposed research are 1) design and construction of GOECAEM instrumentation; 2) development of 3-dimensional GOECAEM enabled methods for ultra-thin film materials characterization at the nanoscale; and 3) development of GOECAEM-enabled methods for nanoparticle characterization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像项目的支持下,德克萨斯理工大学的 Gerardo Gamez 正在研究和开发辉光放电光学发射编码孔径光谱成像元素测绘 (GOCAEM),这是一种分析和测量表面化学元素的新方法。 包括材料、地质和生物科学在内的各个领域都使用元素测绘来加深对自然发生系统的了解或提高制造系统的性能。 然而,当前的元素图谱技术面临着样本分析时间过长或可访问性限制的问题,这限制了它们只能在一小部分系统中使用。 GOCAEM 利用辉光放电光谱的能力来克服这些限制(比典型的 EM 技术快 1000 倍),并结合压缩传感光谱成像策略来提供大大改进的能力,提供允许分析具有挑战性的系统(例如纳米级材料)的优势。 因此,通过这种方法,可以对许多纳米结构表面系统进行快速、常规的诊断三维元素测绘。 该项目的成果将对许多领域产生影响,特别是那些依赖超薄膜和纳米颗粒材料的领域,这符合国家纳米技术计划的需求和愿景。 该项目将在指定的西班牙裔服务机构进行,该机构为接触科学、技术、工程和数学 (STEM) 领域代表性不足的少数群体提供了难得的机会。 为研究生和本科生研究人员提供的多学科培训机会包括仪器开发、等离子体光谱、成像、纳米材料表征和表面分析。 该项目的目标是通过辉光放电发射光谱 (GDOES) 实现纳米材料的元素图谱 (EM)。 GDOES 最初是作为一种替代元素映射技术开发的,与典型技术相比,它可以显着(几个数量级)缩短分析时间。 GDOES 还通过溅射采样及其高通量二维元素映射提供更快的三维元素映射协议。尽管如此,深度分辨率仍然受到二维元素映射时间的限制;因此,仍必须取得显着的成果才能达到 GDOES 提供的最高深度分辨率 (~nm) 和检测极限。 我们将开发辉光放电光学发射编码孔径光谱成像元素映射(GOECAEM),其中通过压缩传感(CS)策略实现的高光谱成像将实现深度分辨率和检测极限所需的增益。 CS 是最近开发的测量策略,代表了采样范式的转变。 它允许在数据采集步骤中使用压缩协议(通常保留用于软件数据处理):这会显着提高数据采集效率和所需的测量时间。 将使用空间光调制器和阵列探测器来开发和实现编码孔径压缩传感高光谱成像。 因此,随着针对两种不同类型材料的方法的开发,这里将寻求纳米结构材料的高通量三维元素映射。 拟议研究的三个主要目标是 1)GOECAEM 仪器的设计和建造; 2) 开发3维GOECAEM支持的纳米级超薄膜材料表征方法; 3) 开发支持 GOCAEM 的纳米粒子表征方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-throughput single pixel spectral imaging system for glow discharge optical emission spectrometry elemental mapping enabled by compressed sensing
高通量单像素光谱成像系统,用于通过压缩传感实现辉光放电发射光谱测定元素映射
  • DOI:
    10.1039/d2ja00021k
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gamez, Gerardo;She, Yue;Rivera, Paola;Shi, Songyue;Finch, Kevin
  • 通讯作者:
    Finch, Kevin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerardo Gamez其他文献

Laser assisted sampling vs direct desorption flowing atmospheric pressure afterglow mass spectrometry of complex polymer samples: Forensic implications for pressure sensitive tape chemical analysis
  • DOI:
    10.1016/j.talanta.2021.122333
  • 发表时间:
    2021-08-15
  • 期刊:
  • 影响因子:
  • 作者:
    Maureen Oliva;Dong Zhang;Paola Prada-Tiedemann;Gerardo Gamez
  • 通讯作者:
    Gerardo Gamez
Material ejection and redeposition following atmospheric pressure near-field laser ablation on molecular solids
  • DOI:
    10.1007/s00216-009-2919-1
  • 发表时间:
    2009-07-07
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Liang Zhu;Gerardo Gamez;Thomas A. Schmitz;Frank Krumeich;Renato Zenobi
  • 通讯作者:
    Renato Zenobi
Quantitative analysis of biopolymers in lignocellulosic biomass feedstocks via laser-assisted micro-pyrolysis flowing atmospheric-pressure afterglow high-resolution ambient mass spectrometry.
通过激光辅助微热解流动大气压余辉高分辨率环境质谱法对木质纤维素生物质原料中的生物聚合物进行定量分析。
Toward a Fuller Understanding of Analytical Atomic Spectrometry
  • DOI:
    10.2116/analsci.18.1185
  • 发表时间:
    2002-11-25
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Gary Hieftje;Mao Huang;Scott Lehn;Kelly Warner;Gerardo Gamez;Steven Ray;Andrew Leach
  • 通讯作者:
    Andrew Leach

Gerardo Gamez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerardo Gamez', 18)}}的其他基金

ECLIPSE/Collaborative Proposal: Studying Microwave-Plasma interactions at Solid Interfaces Using Microwave Microstrip Architectures
ECLIPSE/协作提案:使用微波微带架构研究固体界面处的微波-等离子体相互作用
  • 批准号:
    2206769
  • 财政年份:
    2022
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Standard Grant
Instrument Development for Ultrahigh-throughput 3D Chemical Imaging via Glow Discharge Optical Emission Spectroscopy
通过辉光放电发射光谱进行超高通量 3D 化学成像的仪器开发
  • 批准号:
    1610849
  • 财政年份:
    2016
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Continuing Grant

相似海外基金

Integrated GD-OES/XRF element analyzer (GD-OES = glow discharge optical emission spectroscopy, XRF = X-ray fluorescene)
集成 GD-OES/XRF 元素分析仪(GD-OES = 辉光放电发射光谱,XRF = X 射线荧光)
  • 批准号:
    414179996
  • 财政年份:
    2019
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Major Research Instrumentation
A glow discharge optical emission spectrometer for challenging surfaces
适用于具有挑战性的表面的辉光放电发射光谱仪
  • 批准号:
    LE180100168
  • 财政年份:
    2018
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Optical and electrical acquisition of discharge phenomena on air gaps
气隙放电现象的光电采集
  • 批准号:
    288112425
  • 财政年份:
    2016
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Research Grants
Instrument Development for Ultrahigh-throughput 3D Chemical Imaging via Glow Discharge Optical Emission Spectroscopy
通过辉光放电发射光谱进行超高通量 3D 化学成像的仪器开发
  • 批准号:
    1610849
  • 财政年份:
    2016
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Continuing Grant
In-situ analysis of rare metal ions under deep sea by optical emission spectroscopy of discharge plasma operated in high-pressure water
利用高压水中放电等离子体发射光谱法对深海稀有金属离子进行原位分析
  • 批准号:
    26600129
  • 财政年份:
    2014
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
High sensitivity of the optical wave microphone and application to the spatial distribution measurement of the electric discharge sound of atmospheric pressure plasma
高灵敏度光波麦克风及其在大气压等离子体放电声空间分布测量中的应用
  • 批准号:
    26420395
  • 财政年份:
    2014
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of new measurement techniques for application of glow discharge optical emission spectroscopy to plasma-surface interaction studies
开发新的测量技术,将辉光放电发射光谱应用于等离子体-表面相互作用研究
  • 批准号:
    23560998
  • 财政年份:
    2011
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visualization of electrical discharge sound of the atmospheric pressure plasma with optical wave microphone on phenomenon clarification
用光波麦克风可视化大气压等离子体的放电声音以澄清现象
  • 批准号:
    23560510
  • 财政年份:
    2011
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optical and Electromagnetic Investigations of Cloud-to-Ground Lightning in the Context of In-Cloud Discharge Processes
云内放电过程中云地闪电的光学和电磁研究
  • 批准号:
    0721119
  • 财政年份:
    2007
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Standard Grant
A Fundamental Study on Optical Emission Spectroscopy Measurement of Atmospheric Pressure Discharge Plasmas
大气压放电等离子体发射光谱测量基础研究
  • 批准号:
    18540485
  • 财政年份:
    2006
  • 资助金额:
    $ 41.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了