Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering and Technology (MMLDT-CSET) Conference 2021; San Diego, California; September 26-29, 2021

2021 年机械机器学习和计算科学、工程与技术数字孪生 (MMLDT-CSET) 会议;

基本信息

  • 批准号:
    2110537
  • 负责人:
  • 金额:
    $ 9.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

This 3-day conference is organized into fourteen technical tracks and two short courses in a hybrid format. This conference will provide a forum to exchange new ideas among students, researchers, high school teachers, and practitioners in the fields of mechanistic machine learning, artificial intelligence, and digital twins. Application areas include civil infrastructures, natural hazards engineering, geosystems and petroleum engineering, reliability-based engineering and design, material systems, manufacturing, mathematical and scientific computing, natural and life sciences, and healthcare. A short course called “Mechanistic Data Science” (MDS) targeted at high school students and teachers, and STEM undergraduates is designed to provide participants with a big-picture perspective related to machine learning and digital twins, and to demonstrate how to apply MDS to combine data science tools with mathematical scientific principles to solve intractable problems through daily-life examples. A short course called “Mechanistic Machine Learning for Physics and Mechanics” will be offered for graduate students and researchers to introduce machine learning techniques for the participants with a background in physics and mechanics. These courses will also be integrated with the mentoring and networking activities under a Technical Track “Education, Outreach, and Funding Opportunities”, and with a panel and Q&A sessions for each of the three days. NSF Fellowship will be used to support undergraduate and graduate students, postdoctoral fellows, high school teachers and students, as well as students from underprivileged schools to attend the conference and short course activities. Undergraduate and graduate students from historically black colleges and universities and minority-serving institutions as well as underprivileged high schools will be recruited.This conference introduces “Mechanistic” Machine Learning and Digital Twins (MMLDT) as an integrated methodology for coupling data with mathematics and scientific principles to solve otherwise intractable problems. This conference also identifies “Digital Twins” as important machine learning applications for improved product designs via computational science, engineering, and technology (CSET). The main objective of MMLDT-CSET is to bring together these diverse communities that are interested in learning, developing, and applying machine learning and digital twins via mechanistic methods and computational science and engineering tools for a broad range of engineering and scientific problems, while promoting transdisciplinary collaborations among engineers, physical and biological scientists, data and computer scientists, and mathematicians from federal agencies, academia, and industry. The discussion of future MMLDT research and technology developments will be driven by societal needs and grand challenges presented by practicing engineers, technology firms, and computer/software companies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个为期3天的会议分为14个技术轨道和两个混合格式的短期课程。本次会议将提供一个论坛,让学生、研究人员、高中教师和机械机器学习、人工智能和数字双胞胎领域的从业者交流新的想法。应用领域包括民用基础设施、自然灾害工程、地质系统和石油工程、基于可靠性的工程和设计、材料系统、制造、数学和科学计算、自然和生命科学以及医疗保健。针对高中学生和教师以及STEM本科生的一门名为“机械数据科学”(MDS)的短期课程旨在为参与者提供与机器学习和数字孪生相关的大视野,并演示如何应用MDS将联合收割机数据科学工具与数学科学原理结合起来,通过日常生活中的例子解决棘手的问题。将为研究生和研究人员提供一个名为“物理和力学的机械机器学习”的短期课程,为具有物理和力学背景的参与者介绍机器学习技术。这些课程还将与“教育、外联和供资机会”技术轨道下的辅导和联网活动相结合,并在三天中的每一天都有一个小组讨论和问答会议。NSF Fellowship将用于支持本科生和研究生,博士后研究员,高中教师和学生,以及贫困学校的学生参加会议和短期课程活动。本次会议将介绍“机械式”机器学习和数字孪生(MMLDT),它是一种将数据与数学和科学原理相结合的综合方法,可以解决其他难以解决的问题。本次会议还将“数字双胞胎”确定为通过计算科学,工程和技术(CSET)改进产品设计的重要机器学习应用程序。MMLDT-CSET的主要目标是汇集这些有兴趣通过机械方法和计算科学和工程工具学习,开发和应用机器学习和数字双胞胎的不同社区,以解决广泛的工程和科学问题,同时促进工程师,物理和生物科学家,数据和计算机科学家以及来自联邦机构的数学家之间的跨学科合作。学术界和工业界。关于未来MMLDT研究和技术发展的讨论将由社会需求和实践工程师、技术公司和计算机/软件公司提出的巨大挑战推动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiun-Shyan Chen其他文献

Fracture experiments of coated and non-coated epoxy-alumina composites coupled with micro-CT
涂层和无涂层环氧 - 氧化铝复合材料的断裂实验以及显微CT(分析)
Meshfree analysis of higher-order gradient crystal plasticity using mixed bases
使用混合基的高阶梯度晶体塑性的无网格分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuichi Tadano;Jiun-Shyan Chen
  • 通讯作者:
    Jiun-Shyan Chen
Image-based modeling of coupled electro-chemo-mechanical behavior of Li-ion battery cathode using an interface-modified reproducing kernel particle method
  • DOI:
    10.1007/s00366-024-02016-9
  • 发表时间:
    2024-08-13
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Kristen Susuki;Jeffery Allen;Jiun-Shyan Chen
  • 通讯作者:
    Jiun-Shyan Chen
Open-source shape optimization for isogeometric shells using FEniCS and OpenMDAO
  • DOI:
    10.1007/s00366-025-02116-0
  • 发表时间:
    2025-03-14
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Han Zhao;John T. Hwang;Jiun-Shyan Chen
  • 通讯作者:
    Jiun-Shyan Chen
Simple mechanics model and Hertzian ring crack initiation strength characteristics of silicon nitride ceramic ball subjected to thermal shock
氮化硅陶瓷球热冲击简单力学模型及赫兹环裂纹萌生强度特性
  • DOI:
    10.1016/j.engfracmech.2018.05.003
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yuichi Tadano;Jiun-Shyan Chen;Shinya Matsuda and Takeshi Nakada
  • 通讯作者:
    Shinya Matsuda and Takeshi Nakada

Jiun-Shyan Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiun-Shyan Chen', 18)}}的其他基金

Collaborative Research: Elements: EXHUME: Extraction for High-Order Unfitted Finite Element Methods
合作研究:Elements:EXHUME:高阶未拟合有限元方法的提取
  • 批准号:
    2103939
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Adaptive Multiple-Scale Meshfree Method for Geo-Mechanics and Earth-Moving Simulation
地质力学和土方模拟的自适应多尺度无网格方法
  • 批准号:
    0296112
  • 财政年份:
    2001
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant
Adaptive Multiple-Scale Meshfree Method for Geo-Mechanics and Earth-Moving Simulation
地质力学和土方模拟的自适应多尺度无网格方法
  • 批准号:
    0084589
  • 财政年份:
    2000
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant
Efficient Meshless Methods for Unsteady Lubricated Metal Forming Processes
适用于非稳态润滑金属成型工艺的高效无网格方法
  • 批准号:
    9713842
  • 财政年份:
    1997
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Research Grant
Advancing synthesis prediction with machine learning - A data driven/mechanistic approach
通过机器学习推进综合预测 - 数据驱动/机械方法
  • 批准号:
    2886146
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Studentship
Conference: IACM 2nd Mechanistic Machine Learning & Digital Engineering for Computational Science, Engineering & Technology (MMLDE-CSET); El Paso, Texas; 24-27 September 20
会议:IACM 第二届机械机器学习
  • 批准号:
    2331730
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
  • 批准号:
    10709474
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
Feeding Machine Learning Algorithms with Mechanistic Data to Predict Outcomes of Copper-Catalyzed Couplings
将机械数据输入机器学习算法来预测铜催化耦合的结果
  • 批准号:
    10314079
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
  • 批准号:
    10334519
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
  • 批准号:
    10539401
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
  • 批准号:
    10399134
  • 财政年份:
    2020
  • 资助金额:
    $ 9.96万
  • 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
  • 批准号:
    10571939
  • 财政年份:
    2020
  • 资助金额:
    $ 9.96万
  • 项目类别:
RAPID: COVID-19 comparative modeling and analyses of outbreaks using mechanistic and ensemble machine learning and the development of a platform for projection and management
RAPID:使用机械和集成机器学习对 COVID-19 疫情进行比较建模和分析,并开发预测和管理平台
  • 批准号:
    2032264
  • 财政年份:
    2020
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了