Machine-Learning-Based Modeling of Multiscale Dynamic Systems with Non-Markovian State-Dependent Memory
具有非马尔可夫状态相关记忆的多尺度动态系统的基于机器学习的建模
基本信息
- 批准号:2110981
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Accurate modeling of multiscale dynamic systems has been a long-standing problem that has attracted tremendous interest in computational mathematics and applications in fluid physics, chemical engineering, and materials science. The focus of this project is on multiscale systems that do not have clear scale separation, such as nanoscale multi-physics systems. For such systems the existing approaches feature so-called memory effects and non-Markovian behavior, which limit their understanding and control. The project will develop new advanced computational tools based on machine learning to construct highly accurate models of multiscale systems directly from first-principle-based descriptions. The constructed models retain a molecular-level fidelity and can be broadly applied to investigate the dynamic processes relevant to material design, drug delivery, and soft matter assembly. This project will also provide interdisciplinary training and research experiences for both graduate and undergraduate students. The research in this project will address a fundamental problem in model reduction and multiscale modeling for dynamic systems without clear scale separation. Current empirical models generally show limitations to retain the microscale level fidelity due to the over-simplification of the state-dependent Markovian memory term arising from the unresolved dynamics on microscale. This gap can be bridged by the methods based on machine-learning developed in this project; these will provide a general framework to learn a set of non-Markovian features from the full descriptions, and simultaneously, train the stochastic reduced model by embedding the state-dependent memory term in the extended dynamics of the non-Markovian features. Different from the conventional machine learning approaches for modeling dynamic equations, the models developed in this project are based on rigorous projection formalism and retain a clear physical interpretation. Consistent noise terms can be naturally introduced to the reduced models, which are well-suited for studying complex dynamic systems out of equilibrium. As a result, the methods can be employed to investigate open scientific questions such as the nanoscale assembly process by faithfully accounting for the microscale interactions. In the long term, this project will provide more comprehensive computational tools for establishing predictive modeling and control of such systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多尺度动态系统的精确建模一直是计算数学领域的一个长期问题,在流体物理、化学工程和材料科学等领域的应用中引起了极大的兴趣。该项目的重点是没有明确尺度分离的多尺度系统,如纳米级多物理系统。对于这样的系统,现有的方法具有所谓的记忆效应和非马尔可夫行为,这限制了他们的理解和控制。该项目将开发基于机器学习的新的先进计算工具,以直接从基于第一原理的描述中构建多尺度系统的高精度模型。 所构建的模型保持了分子水平的保真度,并可广泛应用于研究相关的材料设计,药物输送,和软物质组装的动态过程。 该项目还将为研究生和本科生提供跨学科的培训和研究经验。本计画的研究将针对无明确尺度分离的动态系统,解决模型降阶与多尺度建模的基本问题。目前的经验模型一般表现出局限性,以保持微尺度水平的保真度,由于过度简化的状态依赖马尔可夫记忆项所产生的未解决的动力学微尺度。这一差距可以通过该项目中开发的基于机器学习的方法来弥合;这些方法将提供一个通用框架,从完整的描述中学习一组非马尔可夫特征,同时通过将状态依赖记忆项嵌入非马尔可夫特征的扩展动态中来训练随机简化模型。与传统的机器学习方法建模动力学方程不同,该项目中开发的模型基于严格的投影形式主义,并保留了清晰的物理解释。一致的噪声项可以自然地引入到简化模型中,这非常适合于研究复杂的动态系统的平衡。因此,该方法可以用来调查开放的科学问题,如纳米组装过程中忠实地占微尺度的相互作用。从长远来看,这个项目将提供更全面的计算工具,建立预测建模和控制这样的system.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Construction of Coarse-Grained Molecular Dynamics with Many-Body Non-Markovian Memory.
利用多体非马尔可夫记忆构建粗粒度分子动力学。
- DOI:10.1103/physrevlett.131.177301
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Liyao Lyu;H. Lei
- 通讯作者:H. Lei
Machine learning assisted coarse-grained molecular dynamics modeling of meso-scale interfacial fluids
机器学习辅助介观尺度界面流体的粗粒度分子动力学建模
- DOI:10.1063/5.0131567
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ge, Pei;Zhang, Linfeng;Lei, Huan
- 通讯作者:Lei, Huan
Data-driven construction of stochastic reduced dynamics encoded with non-Markovian features
用非马尔可夫特征编码的随机简化动态的数据驱动构造
- DOI:10.1063/5.0130033
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:She, Zhiyuan;Ge, Pei;Lei, Huan
- 通讯作者:Lei, Huan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huan Lei其他文献
Preparation of a Tetrazolyl Monolithic Column via the Combination of ATRP and Click Chemistry for the Separation of Protein
ATRP 与点击化学相结合制备四唑整体柱用于蛋白质分离
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
Huan Lei;Ligai Bai;Xiaoyan Zhang;Gengliang Yang - 通讯作者:
Gengliang Yang
Tendon injury repair strategy driven by supramolecular hydrogen bonding and dynamic covalent bond self-assembly microspheres
由超分子氢键和动态共价键自组装微球驱动的肌腱损伤修复策略
- DOI:
10.1016/j.cej.2025.162726 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:13.200
- 作者:
Taishan Liu;Xiaoxuan Ma;Chenhui Zhu;Yu Mi;Jing Zhao;Linlin Qu;Huan Lei;Daidi Fan - 通讯作者:
Daidi Fan
Adaptive Interval Type-2 Fuzzy Clustering Noisy Image Segmentation Algorithm with Weighted Local Spatial Information Embedding Non-local Spatial Information
- DOI:
10.1007/s40815-025-02068-z - 发表时间:
2025-07-19 - 期刊:
- 影响因子:3.600
- 作者:
Chengquan Huang;Huan Lei;Jialei Peng;Xiaosu Qin;Yang Chen;Lihua Zhou - 通讯作者:
Lihua Zhou
General validity of the second fluctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications
非平衡稳态下第二涨落耗散定理的一般有效性:理论与应用
- DOI:
10.1088/1402-4896/acfce5 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
Yuanran Zhu;Huan Lei;Changho Kim - 通讯作者:
Changho Kim
HIFNet: wavelet transform-enhanced UAV object detection in complex conditions
- DOI:
10.1007/s11227-025-07338-z - 发表时间:
2025-05-15 - 期刊:
- 影响因子:2.700
- 作者:
Lei Shang;Huan Lei;Ze Wu;Wenyuan Yang - 通讯作者:
Wenyuan Yang
Huan Lei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huan Lei', 18)}}的其他基金
CAREER: Machine-Learning Construction of Energy-Stable Non-Newtonian Fluid Hydrodynamics with Molecular Fidelity
职业:具有分子保真度的能量稳定非牛顿流体流体动力学的机器学习构建
- 批准号:
2143739 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Cooperative Agreement
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
- 批准号:
2317077 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Fellowship
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
EU-Funded
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
- 批准号:
2339588 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant














{{item.name}}会员




