Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots

合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施

基本信息

  • 批准号:
    2120333
  • 负责人:
  • 金额:
    $ 22.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project will create a research infrastructure for computer vision and real-time control of autonomous mobile robots (both aerial and ground). The infrastructure includes four integrated components: (1) A Purdue laboratory decorated as miniature cities. (2) Simulators that reflect the physical laboratory. (3) Programmable aerial robots with the same interface as the simulators. (4) Sample solutions for research on artificial intelligence, computer vision, and robot control for evaluation and comparison. This infrastructure will be available to the research community in multiple ways: (1) Users can evaluate their solutions with the simulators in a safe virtual environment. (2) Users can upload their control programs and this team will launch the robots inside Purdue's laboratory. Users can observe the robots remotely using the high-speed cameras already deployed in the laboratory. (3) Users can bring their own robots to the laboratory and conduct experiments. (4) This project will create competitions for researchers to demonstrate their solutions using autonomous mobile robots in simulated emergency and rescue scenarios. The competitions will use miniature buildings and people for the robots to recognize and count objects (such as number of people, vehicles, and houses), assess situations (such as the number of collapsed bridges), while avoiding obstacles.This infrastructure will be available for investigating a wide range of research topics, including (1) real-time computer vision and control. The decorated laboratory will allow researchers to evaluate their solutions for real-time vision and control methods using active computer vision, navigation, and semantic segmentation in a three-dimensional environment. (2) simulation of robot fleets. Users can evaluate and improve their methods in a safe virtual environment before deployment. (3) This infrastructure will integrate virtual and physical environments so that solutions running in the simulators can be ported directly to the physical robots for experiments. (4) collision avoidance, multi-robot coordination, emergency response, computer security, and efficient machine learning on embedded systems. (5) agriculture, city planning, emergency response, and inspection of civil structures. This project will build STEM talents because autonomous robots and visual data are naturally appealing to the general public. With the simulators, students at all levels can participate without the cost of purchasing physical robots. This research infrastructure will reduce the barriers to innovations. This infrastructure will also encourage innovations in machine learning that are efficient in energy and can be ported to resource constrained embedded systems such as aerial robots. The project will engage a broader audience including K-12 students as well because of the many applications described above.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为计算机视觉和自动移动的机器人(空中和地面)的实时控制创建一个研究基础设施。基础设施包括四个组成部分:(1)一个装饰成微型城市的普渡大学实验室。(2)反映物理实验室的模拟器。(3)可编程的空中机器人与模拟器具有相同的接口。(4)用于评估和比较的人工智能、计算机视觉和机器人控制研究的示例解决方案。该基础设施将以多种方式提供给研究社区:(1)用户可以在安全的虚拟环境中使用模拟器评估他们的解决方案。(2)用户可以上传他们的控制程序,这个团队将在普渡大学的实验室内发射机器人。用户可以使用实验室中已经部署的高速摄像机远程观察机器人。(3)用户可以将自己的机器人带到实验室进行实验。(4)该项目将为研究人员创造竞赛,在模拟紧急情况和救援场景中使用自主移动的机器人展示他们的解决方案。比赛将使用微型建筑物和人,让机器人识别和计数物体(如人数,车辆和房屋),评估情况(如倒塌的桥梁数量),同时避开障碍物。这种基础设施将可用于研究广泛的研究课题,包括(1)实时计算机视觉和控制。装饰的实验室将允许研究人员在三维环境中使用主动计算机视觉,导航和语义分割来评估他们的实时视觉和控制方法的解决方案。(2)模拟机器人舰队。用户可以在部署之前在安全的虚拟环境中评估和改进他们的方法。(3)该基础设施将集成虚拟和物理环境,以便在模拟器中运行的解决方案可以直接移植到物理机器人上进行实验。(4)碰撞避免、多机器人协调、应急响应、计算机安全以及嵌入式系统上的高效机器学习。(5)农业、城市规划、应急响应和土木结构检查。该项目将培养STEM人才,因为自主机器人和视觉数据自然会吸引公众。有了模拟器,各级学生都可以参与,而无需购买物理机器人。这种研究基础设施将减少创新的障碍。这一基础设施还将鼓励机器学习方面的创新,这些创新具有能源效率,并且可以移植到资源受限的嵌入式系统中,如空中机器人。该项目将吸引更广泛的受众,包括K-12学生,以及由于上述许多应用程序。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NASRec: Weight Sharing Neural Architecture Search for Recommender Systems
NASRec:推荐系统的权重共享神经架构搜索
  • DOI:
    10.1145/3543507.3583446
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Tunhou;Cheng, Dehua;He, Yuchen;Chen, Zhengxing;Dai, Xiaoliang;Xiong, Liang;Yan, Feng;Li, Hai;Chen, Yiran;Wen, Wei
  • 通讯作者:
    Wen, Wei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiran Chen其他文献

FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
TriZone: A Design of MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations
TriZone:MLC STT-RAM 缓存设计,可实现性能、能耗和可靠性的综合优化
Improving Multilevel Writes on Vertical 3-D Cross-Point Resistive Memory
改进垂直 3D 交叉点电阻存储器的多级写入
Shift-Optimized Energy-Efficient Racetrack-Based Main Memory
基于移位优化的节能赛道主存储器
Essays on the Economics of Networks
网络经济学论文集
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiran Chen
  • 通讯作者:
    Yiran Chen

Yiran Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiran Chen', 18)}}的其他基金

Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
  • 批准号:
    2341163
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328805
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
  • 批准号:
    2220601
  • 财政年份:
    2022
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
  • 批准号:
    2112562
  • 财政年份:
    2021
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Cooperative Agreement
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
  • 批准号:
    2140247
  • 财政年份:
    2021
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
  • 批准号:
    2106828
  • 财政年份:
    2021
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
  • 批准号:
    1955246
  • 财政年份:
    2020
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
  • 批准号:
    2027324
  • 财政年份:
    2020
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    1937435
  • 财政年份:
    2019
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
  • 批准号:
    1925514
  • 财政年份:
    2019
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318703
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: NEW: Building a Batteryless Computing Community through Access to Education, Testbeds, and Tools
合作研究:CCRI:新:通过获得教育、测试平台和工具构建无电池计算社区
  • 批准号:
    2235002
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
  • 批准号:
    2235160
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Syntactic Differencing Infrastructure for Software Evolution Research
合作研究:CCRI:新:软件进化研究的句法差异基础设施
  • 批准号:
    2232594
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: CoMIC: A Collaborative Mobile Immersive Computing Research Infrastructure for Multi-user XR
协作研究:CCRI:新:CoMIC:用于多用户 XR 的协作移动沉浸式计算研究基础设施
  • 批准号:
    2235050
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
  • 批准号:
    2235140
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Grand: Quori 2.0: Uniting, Broadening, and Sustaining a Research Community Around a Modular Social Robot Platform
协作研究:CCRI:盛大:Quori 2.0:围绕模块化社交机器人平台联合、扩大和维持研究社区
  • 批准号:
    2235042
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: Planning-C: A Community for Configurability Open Research and Development (ACCORD)
合作研究:CCRI:Planning-C:可配置性开放研究与开发社区 (ACCORD)
  • 批准号:
    2234909
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
  • 批准号:
    2232554
  • 财政年份:
    2023
  • 资助金额:
    $ 22.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了