Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
基本信息
- 批准号:2106828
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite its spectacular success in the past, design automation of electronic circuits and systems remains limited in effectiveness and efficiency. This is often due to unnecessarily excessive iterations of point software tools, where early predictions on downstream design steps are overly pessimistic and interoperations among different tools largely require manual handling. As such, existing chip-design flows are not considered fully automated, and there still exists a strong need for jointly exploring the considerable room between the different steps in these flows. Moreover, existing design-verification approaches usually involve unwanted redundancy and substantial manual effort, contributing greatly to a well-known bottleneck of time-to-market. The recent progress in machine-learning technology offers a great opportunity to revitalize current Electronic Design Automation (EDA) flows from an alternative perspective, i.e., extracting design and verification knowledge from existing design data, and reusing it on new designs. The goal of this research is to develop such knowledge extraction and reuse techniques with the aid of the state-of-the-art machine learning technology. The outcome of this research is to help mitigate the chip-design productivity crisis and cater to the increasing demand for hardware-accelerated computing. This research is also training students, including women and under-represented minorities, with interdisciplinary skills and preparing tomorrow’s high-tech workforce in the U.S. for solving challenges in the electronic industry.The project involves systematic research on machine learning in the context of electronic design automation with five integrated components: 1) development of learning-based fast and high fidelity prediction techniques for knowledge extraction in the structural and behavioral domains of circuit designs; 2) a study on how to seamlessly integrate the design predictions with circuit optimizations; 3) applying machine-learning prediction to accelerating functional-verification coverage and facilitating automated debugging; 4) developing autonomous learning on the interplay amongst tools and thereby achieving automated synthesis space exploration; 5) automated machine-learning architecture search and feature refinement in EDA applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管过去取得了令人瞩目的成功,但电子电路和系统的设计自动化在有效性和效率方面仍然有限。这通常是由于单点软件工具不必要的过度迭代,其中对下游设计步骤的早期预测过于悲观,不同工具之间的互操作在很大程度上需要手动处理。因此,现有的芯片设计流程并不被认为是完全自动化的,仍然有强烈的需求共同探索这些流程中不同步骤之间的相当大的空间。此外,现有的设计验证方法通常涉及不想要的冗余和大量的人工工作,这极大地造成了众所周知的上市时间瓶颈。机器学习技术的最新进展为从另一种角度振兴当前的电子设计自动化(EDA)流程提供了一个很好的机会,即从现有的设计数据中提取设计和验证知识,并在新的设计中重复使用这些知识。本研究的目标是在最先进的机器学习技术的帮助下,开发这样的知识提取和重用技术。这项研究的结果是帮助缓解芯片设计生产率危机,并迎合对硬件加速计算日益增长的需求。这项研究还在培训学生,包括女性和未被充分代表的少数族裔,掌握跨学科技能,并为美国未来的高科技劳动力做好准备,以应对电子行业的挑战。该项目涉及电子设计自动化背景下的机器学习的系统研究,包括五个集成组件:1)开发基于学习的快速高保真预测技术,用于电路设计的结构和行为领域的知识提取;2)研究如何将设计预测与电路优化无缝集成;3)应用机器学习预测来加速功能验证覆盖和促进自动化调试;4)开发工具之间相互作用的自主学习,从而实现自动化综合空间探索;5)EDA应用中的自动化机器学习架构搜索和特征改进。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How Good Is Your Verilog RTL Code?: A Quick Answer from Machine Learning
- DOI:10.1145/3508352.3549375
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Prianka Sengupta;Aakash Tyagi;Yiran Chen;Jiangkun Hu
- 通讯作者:Prianka Sengupta;Aakash Tyagi;Yiran Chen;Jiangkun Hu
DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters
- DOI:10.1145/3508352.3549427
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Zhiyao Xie;Shiyu Li;Mingyuan Ma;Chen-Chia Chang;Jingyu Pan;Yiran Chen;Jiangkun Hu
- 通讯作者:Zhiyao Xie;Shiyu Li;Mingyuan Ma;Chen-Chia Chang;Jingyu Pan;Yiran Chen;Jiangkun Hu
Preplacement Net Length and Timing Estimation by Customized Graph Neural Network
- DOI:10.1109/tcad.2022.3149977
- 发表时间:2022-11
- 期刊:
- 影响因子:2.9
- 作者:Zhiyao Xie;Rongjian Liang;Xiaoqing Xu;Jiangkun Hu;Chen-Chia Chang;Jingyu Pan;Yiran Chen
- 通讯作者:Zhiyao Xie;Rongjian Liang;Xiaoqing Xu;Jiangkun Hu;Chen-Chia Chang;Jingyu Pan;Yiran Chen
Automatic Routability Predictor Development Using Neural Architecture Search
- DOI:10.1109/iccad51958.2021.9643483
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Jingyu Pan;Chen-Chia Chang;Tunhou Zhang;Zhiyao Xie;Jiang Hu;Weiyi Qi;Chung-Wei Lin;Rongjian Liang;Joydeep Mitra;Elias Fallon;Yiran Chen
- 通讯作者:Jingyu Pan;Chen-Chia Chang;Tunhou Zhang;Zhiyao Xie;Jiang Hu;Weiyi Qi;Chung-Wei Lin;Rongjian Liang;Joydeep Mitra;Elias Fallon;Yiran Chen
The Dark Side: Security and Reliability Concerns in Machine Learning for EDA
- DOI:10.1109/tcad.2022.3199172
- 发表时间:2023-04
- 期刊:
- 影响因子:2.9
- 作者:Zhiyao Xie;Jingyu Pan;Chen-Chia Chang;Jiangkun Hu;Yiran Chen
- 通讯作者:Zhiyao Xie;Jingyu Pan;Chen-Chia Chang;Jiangkun Hu;Yiran Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiran Chen其他文献
Coca-Cola in process of materialisation: a new materialist perspective on He Xiangyu’s Cola Project
物化过程中的可口可乐:新唯物主义视角何翔宇的可乐计划
- DOI:
10.1080/21500894.2023.2196275 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yiran Chen - 通讯作者:
Yiran Chen
Improving Multilevel Writes on Vertical 3-D Cross-Point Resistive Memory
改进垂直 3D 交叉点电阻存储器的多级写入
- DOI:
10.1109/tcad.2020.3006188 - 发表时间:
2021-04 - 期刊:
- 影响因子:2.9
- 作者:
Chengning Wang;Dan Feng;Wei Tong;Yu Hua;Jingning Liu;Bing Wu;Wei Zhao;Linghao Song;Yang Zhang;Jie Xu;Xueliang Wei;Yiran Chen - 通讯作者:
Yiran Chen
Shift-Optimized Energy-Efficient Racetrack-Based Main Memory
基于移位优化的节能赛道主存储器
- DOI:
10.1142/s0218126618500810 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
王党辉;马浪;张萌;安建峰;Hai Helen Li;Yiran Chen - 通讯作者:
Yiran Chen
TriZone: A Design of MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations
TriZone:MLC STT-RAM 缓存设计,可实现性能、能耗和可靠性的综合优化
- DOI:
10.1109/tcad.2017.2783860 - 发表时间:
2018-10 - 期刊:
- 影响因子:2.9
- 作者:
Zitao Liu;Mengjie Mao;Tao Liu;Xue Wang;WUjie Wen;Yiran Chen;Hai Li;王党辉;Yukui Pei;Ning Ge - 通讯作者:
Ning Ge
Yiran Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiran Chen', 18)}}的其他基金
Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
- 批准号:
2341163 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
- 批准号:
2220601 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
- 批准号:
2120333 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
- 批准号:
2112562 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Cooperative Agreement
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
- 批准号:
2140247 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
- 批准号:
1955246 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
- 批准号:
2027324 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937435 - 财政年份:2019
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
- 批准号:
1925514 - 财政年份:2019
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant