Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
基本信息
- 批准号:1955246
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical:The big data revolution has created a critical need for new computing paradigms to efficiently extract valuable information from large datasets. In existing computing systems, data is constantly transferred between the computation and memory units. This so-called memory bottleneck limits their energy efficiency and speed. In contrast, computation and memory in the human brain (neurons and synapses) are closely and densely interconnected. This gives rise to the brain’s extremely low power consumption at ~20W. Inspired by the brain, neuromorphic computing and artificial neural networks have recently attracted immense interest. In particular, deep neural networks (DNNs) can execute complex processing tasks such as pattern recognition and image reconstruction. However, DNNs are computationally intensive and power hungry. This makes it impractical for them to be scaled up to the level of the complexity for true artificial intelligence (AI). In this project, the team will develop a novel artificial synapse for deep neural networks. This prototypical synapse will offer low power consumption, high precision, good scalability, and great potential for large-scale integration. This work can lead to significant improvement in energy efficiency, bandwidth, and performance for deep learning algorithms. The research outcome can lead to the wide use of AI for both high-performance computing and low-power flexible electronics. This project can revolutionize society through advances in healthcare, self-driving vehicles, and autonomous manufacturing. The team will work closely with their local communities to attract students to pursue engineering careers, especially those from underrepresented groups. Activities will include laboratory demonstrations, design projects, summer internships, and career workshops.Technical:The objective of this project is to develop scalable electrochemical two-dimensional (2D) synaptic arrays with high-precision and low-power for advanced hardware acceleration of deep neural networks (DNNs) with orders of magnitude improvements in energy and speed. While binary SRAM cells have shown promising performance for DNN hardware acceleration, its inherent limitations in power and area make it impractical to scale up to the complexity level required for large-scale problems and/or datasets. In this project, the team will take a holistic approach to develop scalable electrochemical 2D synaptic arrays with high precision, lower-power, good linearity, low variations, and CMOS compatibility for large-scale integration. The team will carry out the following three research tasks: (1) device-level optimization in device precision, dynamic range, and scaling; (2) array-level demonstration by building synaptic arrays, lowering device variations, and designing peripheral circuits; (3) system-level integration via building device models, implementing computing-in-memory (CIM), and demonstrating on-chip learning for pixel-to-pixel applications. This work will provide a low-power and scalable framework for the hardware acceleration of DNNs, paving the ways towards the ubiquitous use of artificial intelligence (AI) in both high-performance computers and low-power embedded systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:大数据革命迫切需要新的计算范式,以有效地从大型数据集中提取有价值的信息。在现有的计算系统中,数据在计算单元和存储单元之间不断地传输。这种所谓的内存瓶颈限制了它们的能源效率和速度。相比之下,人脑(神经元和突触)中的计算和记忆紧密相连。这使得大脑的功耗极低,约为 20W。受大脑的启发,神经形态计算和人工神经网络最近引起了人们的极大兴趣。特别是,深度神经网络(DNN)可以执行复杂的处理任务,例如模式识别和图像重建。然而,DNN 计算密集且耗电。这使得将它们扩展到真正的人工智能 (AI) 的复杂程度是不切实际的。在这个项目中,该团队将为深度神经网络开发一种新颖的人工突触。这种原型突触将具有低功耗、高精度、良好的可扩展性以及大规模集成的巨大潜力。这项工作可以显着提高深度学习算法的能源效率、带宽和性能。研究成果可以促进人工智能在高性能计算和低功耗柔性电子产品中的广泛应用。该项目可以通过医疗保健、自动驾驶汽车和自主制造方面的进步来彻底改变社会。该团队将与当地社区密切合作,吸引学生,特别是来自弱势群体的学生从事工程职业。活动将包括实验室演示、设计项目、暑期实习和职业研讨会。技术:该项目的目标是开发高精度、低功耗的可扩展电化学二维 (2D) 突触阵列,用于深度神经网络 (DNN) 的高级硬件加速,在能量和速度方面实现数量级的改进。虽然二进制 SRAM 单元在 DNN 硬件加速方面表现出了良好的性能,但其在功耗和面积方面的固有限制使其无法扩展到大规模问题和/或数据集所需的复杂性级别。在该项目中,团队将采用整体方法开发可扩展的电化学二维突触阵列,具有高精度、低功耗、良好的线性度、低变化和大规模集成的CMOS兼容性。团队将开展以下三项研究任务:(1)器件精度、动态范围、缩放等器件级优化; (2)通过构建突触阵列、降低器件变异、设计外围电路进行阵列级演示; (3) 通过构建设备模型、实现内存计算 (CIM) 以及演示像素到像素应用的片上学习来实现系统级集成。这项工作将为 DNN 的硬件加速提供一个低功耗且可扩展的框架,为人工智能 (AI) 在高性能计算机和低功耗嵌入式系统中的普遍使用铺平道路。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Building Efficient and Robust Neural Network Designs
- DOI:10.1109/ieeeconf56349.2022.10051891
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Xiaoxuan Yang;Huanrui Yang;Jingchi Zhang;Hai Helen Li;Yiran Chen
- 通讯作者:Xiaoxuan Yang;Huanrui Yang;Jingchi Zhang;Hai Helen Li;Yiran Chen
HERO: hessian-enhanced robust optimization for unifying and improving generalization and quantization performance
HERO:hessian 增强的鲁棒优化,用于统一和提高泛化和量化性能
- DOI:10.1145/3489517.3530678
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Huanrui;Yang, Xiaoxuan;Gong, Neil Zhenqiang;Chen, Yiran
- 通讯作者:Chen, Yiran
SpikeSen: Low-Latency In-Sensor-Intelligence Design With Neuromorphic Spiking Neurons
SpikeSen:具有神经形态尖峰神经元的低延迟传感器内智能设计
- DOI:10.1109/tcsii.2023.3235888
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Ziru;Zheng, Qilin;Chen, Yiran;Li, Hai
- 通讯作者:Li, Hai
Photonic Bayesian Neural Network Using Programmed Optical Noises
- DOI:10.1109/jstqe.2022.3217819
- 发表时间:2023-03
- 期刊:
- 影响因子:4.9
- 作者:Changming Wu;Xiaoxuan Yang;Yiran Chen;Mo Li
- 通讯作者:Changming Wu;Xiaoxuan Yang;Yiran Chen;Mo Li
DyNNamic: Dynamically Reshaping, High Data-Reuse Accelerator for Compact DNNs
- DOI:10.1109/tc.2022.3184272
- 发表时间:2023-03
- 期刊:
- 影响因子:3.7
- 作者:Edward Hanson;Shiyu Li;Xuehai Qian;H. Li;Yiran Chen
- 通讯作者:Edward Hanson;Shiyu Li;Xuehai Qian;H. Li;Yiran Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiran Chen其他文献
FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
- DOI:
10.1109/tcad.2016.2619480 - 发表时间:
2017-07 - 期刊:
- 影响因子:2.9
- 作者:
Jie Guo;Wujie Wen;Jingtong Hu;王党辉;Hai Lu;Yiran Chen - 通讯作者:
Yiran Chen
TriZone: A Design of MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations
TriZone:MLC STT-RAM 缓存设计,可实现性能、能耗和可靠性的综合优化
- DOI:
10.1109/tcad.2017.2783860 - 发表时间:
2018-10 - 期刊:
- 影响因子:2.9
- 作者:
Zitao Liu;Mengjie Mao;Tao Liu;Xue Wang;WUjie Wen;Yiran Chen;Hai Li;王党辉;Yukui Pei;Ning Ge - 通讯作者:
Ning Ge
Improving Multilevel Writes on Vertical 3-D Cross-Point Resistive Memory
改进垂直 3D 交叉点电阻存储器的多级写入
- DOI:
10.1109/tcad.2020.3006188 - 发表时间:
2021-04 - 期刊:
- 影响因子:2.9
- 作者:
Chengning Wang;Dan Feng;Wei Tong;Yu Hua;Jingning Liu;Bing Wu;Wei Zhao;Linghao Song;Yang Zhang;Jie Xu;Xueliang Wei;Yiran Chen - 通讯作者:
Yiran Chen
Shift-Optimized Energy-Efficient Racetrack-Based Main Memory
基于移位优化的节能赛道主存储器
- DOI:
10.1142/s0218126618500810 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
王党辉;马浪;张萌;安建峰;Hai Helen Li;Yiran Chen - 通讯作者:
Yiran Chen
Yiran Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiran Chen', 18)}}的其他基金
Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
- 批准号:
2341163 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
- 批准号:
2220601 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
- 批准号:
2120333 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
- 批准号:
2112562 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
- 批准号:
2140247 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
- 批准号:
2106828 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
- 批准号:
2027324 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937435 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
- 批准号:
1925514 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331373 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2326113 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Mapping Excited State Trajectories of Multi-metal Centered Complexes by Two-Dimensional Electronic Spectroscopy
CAS:合作研究:通过二维电子光谱绘制多金属中心配合物的激发态轨迹
- 批准号:
2247821 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Mapping Excited State Trajectories of Multi-metal Centered Complexes by Two-Dimensional Electronic Spectroscopy
CAS:合作研究:通过二维电子光谱绘制多金属中心配合物的激发态轨迹
- 批准号:
2247822 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: How different forms of competition shape trait evolution and coexistence: A tale of two castes in the turtle ants
合作研究:不同形式的竞争如何塑造性状进化和共存:龟蚁两个种姓的故事
- 批准号:
2312889 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
- 批准号:
2309733 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331372 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




