RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows

RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路

基本信息

  • 批准号:
    1937435
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Recent advances in machine learning are fueling a growing demand for intelligent Internet of Things (IoT), i.e., edge network applications. Many of them, such as autonomous vehicles, robots, and healthcare wearables, require real-time and in-situ learning to be perceived as truly intelligent. However, the limited computing and energy resources available at the edge device (e.g., mobile devices, sensors) stand at odds with the massive and growing cost of state-of-the-art machine learning training, posing a grand challenge for real-time machine learning (RTML) at the edge. This goal of this project is to foster a systematic breakthrough in achieving efficient online training of state-of-the-art machine learning algorithms in pervasive resource-constrained platforms and applications. An order of magnitude advance in RTML would enable numerous edge devices to proactively interpret and learn from new data, improve their own performance using what they have learned, and adapt to dynamic environments, all in real time. Success in this project will enable truly intelligent edge devices to penetrate all walks of life and thus generate significant impacts on societies and economies. This project will lead to new courses and open-education resources that can attract diverse groups of students and eventually deliver a platform for inclusion and innovation. The project addresses the RTML grand challenge using a three-pronged 'co-design' approach that seamlessly integrates algorithm, architecture, and circuit-level innovations. Specifically, at the algorithm level, an efficient training framework for RTML, for which trained models are also natively efficient for inference, will be established. Aggressive time and energy reductions can be achieved, at first by improving general training techniques, and then by focusing particularly on online learning and adaptation. At the architecture level, the project will first target reducing the high cost of data movement by trading it for lower-cost computation, and then generate optimal dataflows and hardware architectures to maximize the joint benefits of algorithms and hardware. At the circuit level, the project will leverage adaptive low-precision algorithms and architectures to design ultra-energy-efficient mixed-signal compute fabrics. Statistical computing techniques will be incorporated to demonstrate efficient, scalable, and robust machine learning chips. Finally, at the system level, an integration effort will be included to aid the realization of realistic system goals and to evaluate the innovations of the three core thrusts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习的最新进展正在推动对智能物联网(IoT)的需求不断增长,即,边缘网络应用。其中许多,如自动驾驶汽车,机器人和医疗可穿戴设备,需要实时和原位学习才能被视为真正的智能。然而,在边缘设备处可用的有限计算和能量资源(例如,移动的设备、传感器)与最先进的机器学习训练的巨大且不断增长的成本不一致,对边缘的实时机器学习(RTML)构成了巨大的挑战。该项目的目标是在普遍的资源受限平台和应用程序中实现最先进的机器学习算法的有效在线训练方面取得系统性突破。RTML的一个数量级的进步将使许多边缘设备能够主动解释和学习新数据,使用它们所学到的知识提高自己的性能,并适应动态环境,所有这些都是真实的时间。该项目的成功将使真正的智能边缘设备渗透到各行各业,从而对社会和经济产生重大影响。该项目将带来新的课程和开放教育资源,吸引不同的学生群体,并最终提供一个包容和创新的平台。 该项目使用三管齐下的“协同设计”方法解决了RTML的重大挑战,该方法无缝集成了算法、架构和电路级创新。具体而言,在算法层面,将建立一个有效的RTML训练框架,训练模型也是天生有效的推理。可以通过改进一般培训技术,然后特别关注在线学习和适应,来大幅减少时间和精力。在架构层面,该项目将首先以降低数据移动的高成本为目标,将其转换为低成本计算,然后生成最佳的硬件架构和硬件架构,以最大限度地提高算法和硬件的联合效益。在电路层面,该项目将利用自适应低精度算法和架构来设计超节能混合信号计算结构。将结合统计计算技术来展示高效、可扩展和强大的机器学习芯片。最后,在系统层面,将包括一个集成的努力,以帮助实现现实的系统目标,并评估三个核心thrusts.This奖项的创新反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PENNI: Pruned Kernel Sharing for Efficient CNN Inference
  • DOI:
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiyu Li;Edward Hanson;H. Li;Yiran Chen
  • 通讯作者:
    Shiyu Li;Edward Hanson;H. Li;Yiran Chen
DyNNamic: Dynamically Reshaping, High Data-Reuse Accelerator for Compact DNNs
  • DOI:
    10.1109/tc.2022.3184272
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Edward Hanson;Shiyu Li;Xuehai Qian;H. Li;Yiran Chen
  • 通讯作者:
    Edward Hanson;Shiyu Li;Xuehai Qian;H. Li;Yiran Chen
NASRec: Weight Sharing Neural Architecture Search for Recommender Systems
NASRec:推荐系统的权重共享神经架构搜索
  • DOI:
    10.1145/3543507.3583446
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Tunhou;Cheng, Dehua;He, Yuchen;Chen, Zhengxing;Dai, Xiaoliang;Xiong, Liang;Yan, Feng;Li, Hai;Chen, Yiran;Wen, Wei
  • 通讯作者:
    Wen, Wei
PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
PIDS:3D 点云的联合点交互维度搜索
ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiran Chen其他文献

Coca-Cola in process of materialisation: a new materialist perspective on He Xiangyu’s Cola Project
物化过程中的可口可乐:新唯物主义视角何翔宇的可乐计划
  • DOI:
    10.1080/21500894.2023.2196275
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiran Chen
  • 通讯作者:
    Yiran Chen
Essays on the Economics of Networks
网络经济学论文集
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiran Chen
  • 通讯作者:
    Yiran Chen
Improving Multilevel Writes on Vertical 3-D Cross-Point Resistive Memory
改进垂直 3D 交叉点电阻存储器的多级写入
Shift-Optimized Energy-Efficient Racetrack-Based Main Memory
基于移位优化的节能赛道主存储器
TriZone: A Design of MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations
TriZone:MLC STT-RAM 缓存设计,可实现性能、能耗和可靠性的综合优化

Yiran Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiran Chen', 18)}}的其他基金

Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
  • 批准号:
    2341163
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328805
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
  • 批准号:
    2220601
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120333
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
  • 批准号:
    2112562
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Cooperative Agreement
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
  • 批准号:
    2140247
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
  • 批准号:
    2106828
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
  • 批准号:
    1955246
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
  • 批准号:
    2027324
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
  • 批准号:
    1925514
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317936
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322601
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317938
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了