Collaborative Research: SaTC: CORE: Medium: Privacy Through Design: A Design Methodology to Promote the Creation of Privacy-Conscious Consumer AI

协作研究:SaTC:核心:媒介:通过设计实现隐私:促进创建具有隐私意识的消费者人工智能的设计方法

基本信息

  • 批准号:
    2126066
  • 负责人:
  • 金额:
    $ 37.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

This project centers consideration of privacy in the development of artificial intelligence (AI) technologies that directly impact consumers. Using AI can help systems adapt to specific people's goals and abilities; however, AI systems typically require collecting data and making guesses about their users, both of which can be intrusive and cause harms. For instance, AI systems sometimes make wrong inferences about personal, sensitive characteristics that can cause both psychological harm and affect people's access to systems; the data collected can also be used in unwanted ways, such as large facial recognition databases assembled without people's consent. These harms often happen, even when system designers are well-intentioned, because current design practice provides little specific guidance on how to reason about possible harms. This project will tackle this problem by creating design methods and guidelines that highlight potential privacy issues and design choices that often increase these risks. Student and industry researcher involvement in the development and evaluation of the methods will give the work both direct educational impact and increase the chance that future AI-based systems will make informed choices around privacy and safety risks.The specific method proposed is called Privacy through Design (PtD), a novel research methodology to help creators of consumer-facing AI technologies: (i) model how acute, use-case specific privacy concerns among end-users among stakeholders trade off against the envisioned utility or value of proposed AI concepts; and, (ii) understand how to (re-)design those concepts in a manner that respects stakeholders' privacy concerns of while retaining the envisioned utility of the design. Doing this work makes three main scientific contributions. The first is to develop a taxonomy of algorithmic privacy intrusions to operationalize the unique privacy harms entailed by consumer AI and map those harms onto the unique capabilities and requirements of AI systems. This second is to develop PtD using an iterative methodology incorporating experts and practitioners in industry and academia. The third is to formally evaluate how products developed through PtD compare to those developed through existing industry standards for designing consumer AI technologies. Two key envisioned outputs are a repository of design cases in which privacy concerns emerge and are resolved, and a guidebook with worksheets and recommendations to help creators of consumer AI technologies center consideration of privacy in their design processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目以对消费者产生直接影响的人工智能(AI)技术开发过程中的隐私问题为中心。使用人工智能可以帮助系统适应特定的人的目标和能力;然而,人工智能系统通常需要收集数据并对其用户进行猜测,这两种做法都可能具有侵入性并造成危害。例如,人工智能系统有时会对个人敏感特征做出错误的推断,这可能会造成心理伤害,并影响人们对系统的访问;收集到的数据也可能被用于不必要的方式,比如未经用户同意而建立的大型面部识别数据库。这些危害经常发生,即使当系统设计者是善意的,因为目前的设计实践提供了很少具体的指导,如何推理可能的危害。这个项目将通过创建设计方法和指导方针来解决这个问题,这些方法和指导方针突出了潜在的隐私问题和经常增加这些风险的设计选择。学生和行业研究人员参与这些方法的开发和评估,将给工作带来直接的教育影响,并增加未来基于人工智能的系统在隐私和安全风险方面做出明智选择的机会。提出的具体方法被称为“通过设计保护隐私”(PtD),这是一种新的研究方法,旨在帮助面向消费者的人工智能技术的创造者:(i)建模最终用户和利益相关者之间对用例特定隐私的关注如何与拟议的人工智能概念的预期效用或价值进行权衡;并且,(ii)了解如何(重新)设计这些概念,以尊重利益相关者的隐私问题,同时保留设计的预期效用。这项工作有三个主要的科学贡献。首先是开发一种算法隐私入侵的分类法,以实施消费者人工智能带来的独特隐私危害,并将这些危害映射到人工智能系统的独特功能和需求上。第二个是使用结合工业界和学术界专家和实践者的迭代方法开发PtD。第三个是正式评估通过PtD开发的产品与通过现有行业标准开发的产品在设计消费者人工智能技术方面的对比。设想的两个关键产出是一个设计案例库,其中出现了隐私问题并得到了解决,以及一本包含工作表和建议的指南,以帮助消费者人工智能技术的创造者在设计过程中考虑隐私。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jodi Forlizzi其他文献

A Systematic Review of Biometric Monitoring in the Workplace: Analyzing Socio-technical Harms in Development, Deployment and Use
工作场所生物识别监控的系统回顾:分析开发、部署和使用中的社会技术危害
Methods for Family-Centered Design: Bridging the Gap Between Research and Practice
以家庭为中心的设计方法:弥合研究与实践之间的差距
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bengisu Cagiltay;Hui;Kaiwen Sun;Zhaoyuan Su;Yuxing Wu;Olivia K. Richards;Qiao Jin;Junnan Yu;J. A. Fails;Jason C. Yip;Jodi Forlizzi
  • 通讯作者:
    Jodi Forlizzi
Transparency in the Wild: Navigating Transparency in a Deployed AI System to Broaden Need-Finding Approaches
野外透明度:在已部署的人工智能系统中实现透明度以拓宽需求查找方法

Jodi Forlizzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jodi Forlizzi', 18)}}的其他基金

Upskilling Workers and Re-designing Workplaces for the Future of Automation in the Hospitality Industry
提高工人技能并重新设计工作场所,以实现酒店业自动化的未来
  • 批准号:
    2128954
  • 财政年份:
    2021
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Standard Grant
FW-HTF-P: Building a Skilled Technological Workforce in the Hospitality Service Industry of the Future
FW-HTF-P:在未来的酒店服务行业建立一支熟练的技术劳动力队伍
  • 批准号:
    2026537
  • 财政年份:
    2020
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Standard Grant
EAGER: Synthesizing Notes from Electronic Health Records to Make Them Actionable for Heart Failure Patients
EAGER:综合电子健康记录中的注释,使其对心力衰竭患者可采取行动
  • 批准号:
    1723454
  • 财政年份:
    2017
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Standard Grant
SGER: Enabling Creativity Using Kinetic Typography
SGER:利用动态排版激发创造力
  • 批准号:
    0840766
  • 财政年份:
    2008
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
  • 批准号:
    2230609
  • 财政年份:
    2023
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 37.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了