Blended Learning in a Geographically Distributed Education System for Geomatics Students

测绘学生地理分布式教育系统中的混合学习

基本信息

  • 批准号:
    2130059
  • 负责人:
  • 金额:
    $ 97.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2027-11-30
  • 项目状态:
    未结题

项目摘要

This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low- income students with demonstrated financial need at the University of Florida. Over its 6-year duration, this project will fund scholarships for 38 unique full time and half-time students who are pursuing a bachelor’s degree in geomatics. Third- and fourth-year students, including transfer students from community colleges, will receive up to two-year scholarships. This project intends to increase student enrollment and persistence in geomatics by linking scholarships with effective support activities, including faculty mentoring, intentional advising, participation in co-curricular activities, professional training, and participation in discipline-specific conferences. This project builds on the existing geographically distributed blended geomatics education system at the University of Florida, which delivers the degree program at the main campus, and at two locations close to the largest population centers in the state. Transfer students will be recruited from community and state colleges and support services will be provided to help students have a successful transition to the University of Florida and complete their geomatics degree. This project introduces a model that will improve the collaboration between a four-year STEM degree program, community/state colleges, and professionals in industry at the state level. It is expected that new knowledge will be generated by studying the effects of blended learning and organizational structure accommodations on low-income student participation and success.The overall goal of the project is to increase STEM degree completion for low-income, high-achieving undergraduates with demonstrated financial need. This project aims to: increase the enrollment of low-income geomatics students in a geographically distributed education system; provide professional development to help students transition to the geomatics workforce; and generate new knowledge by studying factors affecting recruitment and retention of low-income transfer students. Organizational structure adaptations through geographically distributed education and the use of a blended education system should help improve STEM education and overcome systemic barriers for transfer students. Further study is warranted to understand how organizational structure adaptation, intentional mentoring, participation in co-curricular activities, and providing financial support can affect low-income students’ participation and success in the geomatics technology field. This project will identify the barriers affecting the enrollment of low-income students, the factors contributing to student advancement, and the effects of adopting a blended geographically distributed geomatics education system on student success. The data collected in this project will be analyzed to assess differences between project scholars and other students in the degree program. Socioeconomic, organizational structure, demographic, and geographic related factors will be analyzed using exploratory, statistical, and machine learning analysis techniques. This project has the potential to contribute new knowledge about how a distributed education system with financial, cultural, and professional support will affect low-income transfer student recruitment and advancement in STEM fields, which will benefit geomatics technology education and the broader STEM education community. The results will be presented at education and professional conferences, workshops, and seminars as well as other digital dissemination venues. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过支持佛罗里达大学表现出经济需求的高成就、低收入学生的保留和毕业,为国家对受过良好教育的科学家、数学家、工程师和技术人员的需求做出贡献。在6年的时间里,该项目将为38名正在攻读学士学位的全日制和半日制学生提供奖学金。 地理学学位。三年级和四年级的学生,包括社区大学的转学生,将获得最多两年的奖学金。该项目旨在通过将奖学金与有效的支持活动联系起来,包括教师指导,有意咨询,参加课外活动,专业培训和参加学科特定会议,来增加学生入学率和坚持地理信息学。该项目建立在佛罗里达大学现有的地理分布混合地理信息学教育系统的基础上,该系统在主校区和靠近该州最大人口中心的两个地点提供学位课程。转学生将从社区和州立学院招募,并提供支持服务,以帮助学生成功过渡到佛罗里达大学,并完成他们的地理信息学学位。该项目引入了一种模式,将改善四年制STEM学位课程,社区/州立学院和州一级行业专业人士之间的合作。预计通过研究混合学习和组织结构调整对低收入学生参与和成功的影响,将产生新的知识。该项目的总体目标是提高低收入、高成就、有经济需求的本科生的STEM学位完成率。该项目旨在:增加低收入地理信息学学生在地理分布教育系统中的入学人数;提供专业发展,帮助学生过渡到地理信息学劳动力队伍;通过研究影响低收入转学生的招聘和保留的因素,产生新的知识。通过地理分布的教育和使用混合教育系统进行组织结构调整,应有助于改善STEM教育,并克服转学生的系统性障碍。进一步的研究是必要的,以了解如何组织结构的适应,有意辅导,参与课外活动,并提供财政支持,可以影响低收入家庭的学生的参与和成功的地理信息技术领域。该项目将确定影响低收入学生入学的障碍,有助于学生进步的因素,以及采用混合地理分布的地理信息学教育系统对学生成功的影响。在这个项目中收集的数据将进行分析,以评估项目学者和学位课程的其他学生之间的差异。社会经济,组织结构,人口统计和地理相关因素将使用探索性,统计和机器学习分析技术进行分析。该项目有潜力贡献新的知识,了解具有财务,文化和专业支持的分布式教育系统将如何影响低收入转学生的招聘和STEM领域的进步,这将有利于地理信息技术教育和更广泛的STEM教育社区。研究结果将在教育和专业会议、讲习班和研讨会以及其他数字传播场所公布。该项目由NSF的科学,技术,工程和数学奖学金计划资助,该计划旨在增加低收入学术人才的数量,这些学生表现出经济需求,并获得STEM领域的学位。它还旨在改善未来STEM工作者的教育,并产生关于低收入学生的学术成功,保留,转移,毕业和学术/职业道路的知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amr Abd-Elrahman其他文献

Intermittent sprinkler irrigation during the establishment of strawberry (<em>Fragaria ×ananassa</em> Duch.) bare-root transplants conserves water without loss of yield and fruit quality
  • DOI:
    10.1016/j.agwat.2024.109169
  • 发表时间:
    2024-12-20
  • 期刊:
  • 影响因子:
  • 作者:
    Junaid Mushtaq Lone;Shinsuke Agehara;Amr Abd-Elrahman
  • 通讯作者:
    Amr Abd-Elrahman
Evaluating post-hurricane impacts in co-management areas: a framework for expert consensus
  • DOI:
    10.1007/s11069-020-04061-1
  • 发表时间:
    2020-05-20
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    John Diaz;Shannon Carnevale;Cheryl Millett;Amr Abd-Elrahman;Katie Britt
  • 通讯作者:
    Katie Britt

Amr Abd-Elrahman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
  • 批准号:
    DP240103278
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Discovery Early Career Researcher Award
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
  • 批准号:
    2905946
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 97.39万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了