EAGER: Epidemic Spread Modeling Using Hard Data

EAGER:使用硬数据进行流行病传播建模

基本信息

  • 批准号:
    2130681
  • 负责人:
  • 金额:
    $ 20.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Data-driven prediction models of the spread of COVID-19 are critical for guiding public health policy. Epidemiological models that use as input data in aggregated form can be used for prediction but the granularity of input can limit model usability. Models that are individual-centric are a lot more flexible but require as input the time series of every person's movement within a population: the exact location of each individual, the duration of the individual's stay at the location, and the transition to the next location. Due to privacy issues, accurate data of such granularity are not publicly available. The focus of this project is on the development of a prediction ecosystem that is individual-centric and can be used to foresee the spread of a highly contagious disease within a population that is active within an urban area. Such a model can be used to develop what-if scenarios to mitigate the spread of the disease and can become an indispensable tool for guiding policy decisions in future pandemics. This project will provide a flexible tool for epidemic modeling of COVID-19 and future pandemics. This project advocates the usage of agent-based models as an alternative to machine-learning for accurate prediction of the spread of contagious diseases. The aim is to create a prediction ecosystem for evaluating detailed scenarios: geographical restrictions of mobility, work from home orders/advisories, school closures (and partial openings under different conditions), points of interest operating under various capacities, time in quarantine, and vaccination priority, among others. The above scenarios can be modeled at various levels of detail with the aim to keep the model input small, compact, and flexible, but without compromising its prediction ability. Analysis of the above within the agent-based model setting identifies the most effective yet feasible input abstractions, similar to identifying the importance of feature selection in machine learning models. This tool, driven by anonymized cell-phone data will provide a robust modeling ecosystem that captures the effect of mitigation measures of contagious diseases using stochastic models that are complementary to machine-learning ones. Through this project, undergraduate and graduate students will be trained in the art of applied data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的COVID-19传播预测模型对于指导公共卫生政策至关重要。以汇总形式作为输入数据的流行病学模型可用于预测,但输入的粒度会限制模型的可用性。以个体为中心的模型更加灵活,但需要输入群体中每个人移动的时间序列:每个人的确切位置,每个人在该位置停留的时间,以及向下一个位置的过渡。由于隐私问题,这种粒度的准确数据是不公开的。该项目的重点是开发一个以个人为中心的预测生态系统,可用于预测高度传染性疾病在城市地区活跃人群中的传播。这样的模型可用于制定减轻疾病传播的假设情景,并可成为指导未来大流行决策的不可或缺的工具。该项目将为COVID-19和未来大流行的流行病建模提供灵活的工具。该项目提倡使用基于主体的模型作为机器学习的替代方案,以准确预测传染病的传播。目的是创建一个预测生态系统,以评估详细的情景:流动性的地理限制、在家工作订单/咨询、学校关闭(以及在不同条件下的部分开放)、以不同能力运作的兴趣点、隔离时间和疫苗接种优先级等。上述场景可以在不同的细节级别上建模,目的是保持模型输入小、紧凑和灵活,但不影响其预测能力。在基于代理的模型设置中对上述内容进行分析,识别出最有效且可行的输入抽象,类似于识别机器学习模型中特征选择的重要性。该工具由匿名手机数据驱动,将提供一个强大的建模生态系统,利用随机模型捕捉传染病缓解措施的效果,这些模型与机器学习模型相辅相成。通过这个项目,本科生和研究生将在应用数据科学的艺术训练。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GeoSpread: an Epidemic Spread Modeling Tool for COVID-19 Using Mobility Data
GeoSpread:使用移动数据的 COVID-19 流行病传播建模工具
  • DOI:
    10.1145/3524458.3547257
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schmedding, Anna;Yang, Lishan;Pinciroli, Riccardo;Smirni, Evgenia
  • 通讯作者:
    Smirni, Evgenia
Epidemic Spread Modeling for COVID-19 Using Cross-Fertilization of Mobility Data
使用流动性数据的交叉融合进行 COVID-19 流行病传播建模
  • DOI:
    10.1109/tbdata.2023.3248650
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Schmedding, Anna;Pinciroli, Riccardo;Yang, Lishan;Smirni, Evgenia
  • 通讯作者:
    Smirni, Evgenia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evgenia Smirni其他文献

A regression-based analytic model for capacity planning of multi-tier applications
Scheduling data analytics work with performance guarantees: queuing and machine learning models in synergy

Evgenia Smirni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evgenia Smirni', 18)}}的其他基金

BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
EAGER: Using Machine Learning to Increase the Operational Efficiency of Large Distributed Systems
EAGER:利用机器学习提高大型分布式系统的运营效率
  • 批准号:
    1649087
  • 财政年份:
    2016
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
SHF-Small: Robust Methodologies for Effective Data Center Management
SHF-Small:有效数据中心管理的稳健方法
  • 批准号:
    1218758
  • 财政年份:
    2012
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
CPA-ACR-CSA: Effective Resource Allocation under Temporal Dependence
CPA-ACR-CSA:时间依赖性下的有效资源分配
  • 批准号:
    0811417
  • 财政年份:
    2008
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
CSR-SMA: Autocorrelated Flows in Systems: Analytic Models and Applications
CSR-SMA:系统中的自相关流:分析模型和应用
  • 批准号:
    0720699
  • 财政年份:
    2007
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
ITR-(ASE)-(dmc+int): Reconfigurable, Data-driven Resource Allocation in Complex Systems: Practice and Theoretical Foundations
ITR-(ASE)-(dmc int):复杂系统中可重构、数据驱动的资源分配:实践和理论基础
  • 批准号:
    0428330
  • 财政年份:
    2004
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Effective Techniques and Tools for Resource Management in Clustered Web Servers
集群Web服务器资源管理的有效技术和工具
  • 批准号:
    0098278
  • 财政年份:
    2001
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: Adaptive Data Parallel Storage
协作研究:自适应数据并行存储
  • 批准号:
    0090221
  • 财政年份:
    2001
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Next Generation Software: Coordinated Allocation of Processor and I/O Resources in Parallel Systems
下一代软件:并行系统中处理器和 I/O 资源的协调分配
  • 批准号:
    9974992
  • 财政年份:
    1999
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Understanding Stochastic Spatiotemporal Dynamics of Epidemic Spread to Improve Control Interventions - From COVID-19 to Future Pandemics
合作研究:了解流行病传播的随机时空动态以改进控制干预措施 - 从 COVID-19 到未来的大流行
  • 批准号:
    2140405
  • 财政年份:
    2022
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Stochastic Spatiotemporal Dynamics of Epidemic Spread to Improve Control Interventions - From COVID-19 to Future Pandemics
合作研究:了解流行病传播的随机时空动态以改进控制干预措施 - 从 COVID-19 到未来的大流行
  • 批准号:
    2140420
  • 财政年份:
    2022
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Stochastic Spatiotemporal Dynamics of Epidemic Spread to Improve Control Interventions - From COVID-19 to Future Pandemics
合作研究:了解流行病传播的随机时空动态以改进控制干预措施 - 从 COVID-19 到未来的大流行
  • 批准号:
    2140441
  • 财政年份:
    2022
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Integrative Modeling of Intervention Serology and the Role of Shield Immunity in Reducing COVID-19 Epidemic Spread
合作研究:RAPID:干预血清学的综合建模以及屏蔽免疫在减少 COVID-19 流行病传播中的作用
  • 批准号:
    2032084
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
RAPID: Urban Resilience to Health Emergencies: Revealing Latent Epidemic Spread Risks from Population Activity Fluctuations and Collective Sense-making
RAPID:城市对突发卫生事件的抵御能力:揭示人口活动波动和集体意识造成的潜在流行病传播风险
  • 批准号:
    2026814
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
RAPID: SafePaths: A privacy-first contact tracing solution for early interventions of COVID-19 spread during the first wave and to minimize the second wave of the epidemic
RAPID:SafePaths:隐私优先的接触者追踪解决方案,用于在第一波疫情期间早期干预 COVID-19 传播,并最大限度地减少第二波疫情
  • 批准号:
    2031288
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Integrative Modeling of Intervention Serology and the Role of Shield Immunity in Reducing COVID-19 Epidemic Spread
合作研究:RAPID:干预血清学的综合建模以及屏蔽免疫在减少 COVID-19 流行病传播中的作用
  • 批准号:
    2032082
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Have the drug-resistant bacteria that caused the large-scale nosocomial outbreak brought epidemic spread in the region?
造成院内大规模暴发的耐药菌是否给该地区带来了疫情蔓延?
  • 批准号:
    18K10040
  • 财政年份:
    2018
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The mechanism of spread of epidemic clones of antimicrobial resistant bacteria
抗菌药物耐药菌流行性克隆的传播机制
  • 批准号:
    17K08846
  • 财政年份:
    2017
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
III: Small: Data Management for Real-Time Data Driven Epidemic Spread Simulations
III:小型:实时数据驱动的流行病传播模拟的数据管理
  • 批准号:
    1318788
  • 财政年份:
    2013
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了