SHF-Small: Robust Methodologies for Effective Data Center Management
SHF-Small:有效数据中心管理的稳健方法
基本信息
- 批准号:1218758
- 负责人:
- 金额:$ 49.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite the ubiquity of data centers, little is known about their effective management. Consolidation of multiple applications with diverse and changing resource requirements is common in data centers as hardware resources are abundant and opportunities for better system usage are plenty, as are opportunities to degrade individual application performance due to unregulated performance interference between applications and system resources. Is it possible to maximize resource usage while respecting individual application performance targets or is it an oxymoron to simultaneously meet such conflicting measures? In this project, a solution methodology to the above difficult problem is proposed using a three-pronged approach.First, a detailed large scale performance study on several thousands of data center servers within a time period that spans two years is going to be conducted. This study provides a micro and macro view of current workload requirements, of workload resource demands onbasic resource components including CPU, memory, disk, and their temporal evolution. This analysis provides a baseline for the development of scalable and efficient resource management in data centers.Second, extensive experimentation on basic components of data centers is going to quantify performance interference among different classes of applications due to consolidation. This experimentation drives the development of a light-weight profiler that is system- and application-agnostic. The methodology captures application resource demands via non-intrusive low-level measurements that are provided via standard tools.The experimental observations have the potential to drive the development of resource allocation policies in data centers both at the micro level (i.e., at specific hardware components that are used as data center building blocks) and at the macro level (i.e., at the data center as a whole).Third, a queueing-theory based tool is developed that uses as input the resource demands measured by the profiler to accurately predict application scalability under homogeneous and heterogeneous consolidations. The model can be used to predict the application and system performance under virtualized environments at the micro and macro levels, and provide consolidation suggestions such that pre-defined user- or system-specified performance targets are met.The proposed methodologies have the potential to improve the effectiveness of resource allocation in data centers that operate under complex workloads and show excellent potential for allocation solutions that meet pre-defined user and system performance targets. This research will affect the state-of-the-practice via industrial collaborations, especially IBM Research and NEC Research Labs. More broadly, this research has the potential to make a strong impact in management of in-production data centers. Through this project, several students will be prepared to better meet industry demands in the areas of performance modeling and resource allocation in complex environments.
尽管数据中心无处不在,但对其有效管理知之甚少。在数据中心中,具有不同且不断变化的资源需求的多个应用的整合是常见的,因为硬件资源丰富,并且更好地利用系统的机会很多,由于应用和系统资源之间的不受管制的性能干扰,降低单个应用性能的机会也很多。 在尊重各个应用程序性能目标的同时,是否有可能最大限度地利用资源,或者同时满足这些相互冲突的措施是一种矛盾的说法?在本项目中,针对上述难题,提出了一种三管齐下的解决方法。首先,将在两年内对数千台数据中心服务器进行详细的大规模性能研究。本研究提供了当前工作负载需求的微观和宏观视图,工作负载资源对基本资源组件(包括CPU、内存、磁盘)的需求及其时间演变。该分析为数据中心中可扩展和高效的资源管理的开发提供了基线。第二,对数据中心基本组件的广泛实验将量化由于整合而导致的不同类别应用程序之间的性能干扰。这个实验推动了一个轻量级的分析器的开发,这是系统和应用程序不可知的。该方法通过标准工具提供的非侵入式低级测量来捕获应用程序资源需求。实验观察结果有可能在微观层面(即,在用作数据中心构建块的特定硬件组件处)和在宏观级别处(即,第三,开发了一种基于分析理论的工具,该工具使用分析器测量的资源需求作为输入,以准确预测同构和异构整合下的应用程序可伸缩性。该模型可用于在微观和宏观层面上预测虚拟化环境下的应用和系统性能,并提供整合建议,以满足预定义的用户或系统指定的性能目标。所提出的方法有可能提高在复杂工作负载下运行的数据中心中的资源分配的有效性,并显示出满足预定义性能目标的分配解决方案的出色潜力。定义用户和系统性能目标。这项研究将通过工业合作,特别是IBM研究和NEC研究实验室,影响实践的状态。更广泛地说,这项研究有可能对生产数据中心的管理产生重大影响。通过这个项目,几个学生将准备更好地满足在复杂环境中的性能建模和资源分配领域的行业需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evgenia Smirni其他文献
A regression-based analytic model for capacity planning of multi-tier applications
- DOI:
10.1007/s10586-008-0052-0 - 发表时间:
2008-03-25 - 期刊:
- 影响因子:4.100
- 作者:
Qi Zhang;Ludmila Cherkasova;Ningfang Mi;Evgenia Smirni - 通讯作者:
Evgenia Smirni
Scheduling data analytics work with performance guarantees: queuing and machine learning models in synergy
- DOI:
10.1007/s10586-016-0563-z - 发表时间:
2016-04-23 - 期刊:
- 影响因子:4.100
- 作者:
Ji Xue;Feng Yan;Alma Riska;Evgenia Smirni - 通讯作者:
Evgenia Smirni
Evgenia Smirni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evgenia Smirni', 18)}}的其他基金
EAGER: Epidemic Spread Modeling Using Hard Data
EAGER:使用硬数据进行流行病传播建模
- 批准号:
2130681 - 财政年份:2021
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
EAGER: Using Machine Learning to Increase the Operational Efficiency of Large Distributed Systems
EAGER:利用机器学习提高大型分布式系统的运营效率
- 批准号:
1649087 - 财政年份:2016
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
CPA-ACR-CSA: Effective Resource Allocation under Temporal Dependence
CPA-ACR-CSA:时间依赖性下的有效资源分配
- 批准号:
0811417 - 财政年份:2008
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
CSR-SMA: Autocorrelated Flows in Systems: Analytic Models and Applications
CSR-SMA:系统中的自相关流:分析模型和应用
- 批准号:
0720699 - 财政年份:2007
- 资助金额:
$ 49.08万 - 项目类别:
Continuing Grant
ITR-(ASE)-(dmc+int): Reconfigurable, Data-driven Resource Allocation in Complex Systems: Practice and Theoretical Foundations
ITR-(ASE)-(dmc int):复杂系统中可重构、数据驱动的资源分配:实践和理论基础
- 批准号:
0428330 - 财政年份:2004
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
Effective Techniques and Tools for Resource Management in Clustered Web Servers
集群Web服务器资源管理的有效技术和工具
- 批准号:
0098278 - 财政年份:2001
- 资助金额:
$ 49.08万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Data Parallel Storage
协作研究:自适应数据并行存储
- 批准号:
0090221 - 财政年份:2001
- 资助金额:
$ 49.08万 - 项目类别:
Continuing Grant
Next Generation Software: Coordinated Allocation of Processor and I/O Resources in Parallel Systems
下一代软件:并行系统中处理器和 I/O 资源的协调分配
- 批准号:
9974992 - 财政年份:1999
- 资助金额:
$ 49.08万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SHF: Small: Software and Hardware Support for Robust Deep Learning
SHF:小型:强大深度学习的软件和硬件支持
- 批准号:
2301334 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2301940 - 财政年份:2022
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114514 - 财政年份:2021
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114519 - 财政年份:2021
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114526 - 财政年份:2021
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
SHF: Small: Approximate-Computing Enabled Robust 3D NAND Flash Memories
SHF:小型:支持近似计算的稳健 3D NAND 闪存
- 批准号:
1718080 - 财政年份:2017
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
SHF: Small: A reconfigurable architecture for digital circuit computation by fast, robust, and leakless DNA strand displacement cascades
SHF:小型:通过快速、稳健且无泄漏的 DNA 链位移级联进行数字电路计算的可重构架构
- 批准号:
1718938 - 财政年份:2017
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
SHF: Small: Synthesis of Robust Clock Networks for Multiple-Corner Multiple-Mode Designs
SHF:小型:用于多角多模式设计的鲁棒时钟网络综合
- 批准号:
1527562 - 财政年份:2015
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1420718 - 财政年份:2014
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant