I-Corps: Development of machine learning technology for matching under a variety of realistic and largescale preference structures

I-Corps:开发用于在各种现实和大规模偏好结构下进行匹配的机器学习技术

基本信息

  • 批准号:
    2133869
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project focuses on the development of new technologies for achieving efficient two-sided matching under the constraints of fairness and trustworthiness. Numerous technologies presently exist for two-sided matching of supplies and demands. Those assessments that are fair and trustworthy tend to lack efficiency for commercial applications and lack adequate performance specifications, while those with ideal efficiency are too computationally expensive for large-scale markets. The proposed program explores implementation and commercialization opportunities within the project's initial application focus of small to medium-sized businesses in manufacturing. The proposed technologies have a broad application potential, and can materially reduce the time of finding suitable suppliers and lowering prices. Additionally, the longer-term development of the technology may prove disruptive in markets such as call centers and student tutoring websites. The developed technologies may also improve the supply chain and better allocate scarce resources, e.g., vaccines and medicines, while ensuring social efficiency and fairness in the matching process.This I-Corps project is based on the premise that the intersection of state-of-the-art machine learning and economic principles leads to disruptive innovation. The project's technologies offer a fundamentally different approach to two-sided matching than those developed in the past six decades. This project pursues a data-driven solution to a dynamic two-sided matching problem. Previous progress on this project has focused on the theoretical development of the mechanism design and experimental verification of algorithms in small-scale markets with hundreds of users. By contrast, this project enables a widely scalable approach for millions of users to be matched in real-time and allowing realistic uncertain preferences. The approach not only yields maximum efficiency but also guarantees outcomes such as trustworthiness and fairness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目更广泛的影响/商业潜力侧重于开发新技术,以在公平和可信的约束下实现高效的双边匹配。目前存在多种用于供应和需求的双边匹配的技术。那些公平可信的评估对于商业应用来说往往缺乏效率,并且缺乏足够的性能规范,而那些具有理想效率的评估对于大规模市场来说计算成本太高。拟议的计划探讨了该项目最初的应用重点是制造业中小型企业的实施和商业化机会。所提出的技术具有广泛的应用潜力,可以大大减少寻找合适供应商的时间并降低价格。此外,该技术的长期发展可能会对呼叫中心和学生辅导网站等市场产生颠覆性影响。所开发的技术还可以改善供应链,更好地分配疫苗和药品等稀缺资源,同时确保匹配过程中的社会效率和公平。这个I-Corps项目的前提是最先进的机器学习和经济原理的交叉带来颠覆性创新。该项目的技术提供了一种与过去六十年开发的技术截然不同的双面匹配方法。该项目寻求一种数据驱动的解决方案来解决动态两侧匹配问题。该项目前期的进展主要集中在数百用户的小规模市场中机制设计的理论发展和算法的实验验证。相比之下,该项目提供了一种可广泛扩展的方法,可以实时匹配数百万用户,并允许现实的不确定偏好。 该方法不仅能产生最大的效率,还能保证可信性和公平性等结果。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lexin Li其他文献

Sparse Low-rank Tensor Response Regression
稀疏低秩张量响应回归
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Sun;Lexin Li
  • 通讯作者:
    Lexin Li
Constrained regression model selection
  • DOI:
    10.1016/j.jspi.2008.02.006
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lexin Li;Chih-Ling Tsai
  • 通讯作者:
    Chih-Ling Tsai
On post dimension reduction statistical inference
  • DOI:
    10.1214/15-AOS1859
  • 发表时间:
  • 期刊:
  • 影响因子:
  • 作者:
    Kyongwon Kim;Bing Li;Zhou Yu;Lexin Li
  • 通讯作者:
    Lexin Li
High-dimensional Response Growth Curve Modeling for Longitudinal Neuroimaging Analysis
用于纵向神经影像分析的高维响应生长曲线建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu Wang;Xiang Lyu;Zhengwu Zhang;Lexin Li
  • 通讯作者:
    Lexin Li
Scalable Object Detection Using Deep but Lightweight CNN with Features Fusion
使用深度轻量级 CNN 和特征融合进行可扩展目标检测
  • DOI:
    10.1007/978-3-319-71607-7_33
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaosong Chen;Shangsheng Feng;Pei Xu;Lexin Li;Ling Zheng;Jin Wang;Xin Deng
  • 通讯作者:
    Xin Deng

Lexin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lexin Li', 18)}}的其他基金

CIF: Small: Collaborative Research: Graphical Modeling of Multivariate Functional Data
CIF:小型:协作研究:多元函数数据的图形建模
  • 批准号:
    2102227
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Tensor Envelope Model - A New Approach for Regressions with Tensor Data
合作研究:张量包络模型 - 张量数据回归的新方法
  • 批准号:
    1613137
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
New Dimension Reduction Approaches for Modern Scientific Data with High Dimensionality and Complex Structure
高维复杂结构现代科学数据降维新方法
  • 批准号:
    1106668
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Sufficient Dimension Reduction for Missing, Censored, and Correlated Data
针对缺失、删失和相关数据进行充分降维
  • 批准号:
    0706919
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Investment Accelerator
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
  • 批准号:
    10091589
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
  • 批准号:
    2311632
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Development of a correlational algorithm between oral function examination and oral-related QoL using machine learning.
使用机器学习开发口腔功能检查和口腔相关生活质量之间的相关算法。
  • 批准号:
    23K09302
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
  • 批准号:
    23H02064
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an RNA-based test for diagnosing and monitoring bone and soft tissue cancers
开发基于 RNA 的测试来诊断和监测骨癌和软组织癌
  • 批准号:
    480287
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Operating Grants
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
  • 批准号:
    23K13326
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了