New Dimension Reduction Approaches for Modern Scientific Data with High Dimensionality and Complex Structure
高维复杂结构现代科学数据降维新方法
基本信息
- 批准号:1106668
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the recent explosion of scientific data, and its unprecedented size and complexity, dimension reduction is becoming a central ingredient in any modern statistical analysis. This project aims to couple dimension reduction methodology with current statistical learning techniques, which results in an entirely new class of flexible and effective dimension reduction solutions for modern data with both high dimensionality and complex structure. From the coupling, the investigator establishes a framework for dimension reduction that incorporates prior information regarding the known structural relationships between the variables. Within this framework, the investigator plans to develop a family of dimension reduction solutions so that the results are more readily interpretable and accurate. Such a framework is to greatly facilitate the analysis of neuroimaging, climate, and genomic data where prior structural information is often available. Modern technologies routinely produce massive amounts of data and such a data deluge now engulfs every branch of science and public life. As a result, scientific progress now heavily depends on the ability to process and analyze complex high-dimensional data. At the heart of these analyses are methods that reduce the dimensionality of the data, sometimes dramatically, by identifying a small set of variables that are important, or obtaining a few combinations of the original measurements. This project aims to develop a host of novel dimension reduction methods to address these pressing challenges in high-dimensional data analysis. The proposed research is expected to make significant contributions on two fronts: enabling scientists to quickly and effectively extract useful information from massive data, and at the same time, benefiting the discipline of statistics with advances in theory, methods and applications.
随着最近科学数据的爆炸性增长,以及其前所未有的大小和复杂性,降维正成为任何现代统计分析的核心要素。该项目旨在将降维方法与当前的统计学习技术相结合,从而为高维和复杂结构的现代数据带来一种全新的灵活有效的降维解决方案。通过耦合,调查者建立了降维框架,该框架结合了关于变量之间的已知结构关系的先验信息。在这个框架内,研究人员计划开发一系列降维解决方案,使结果更易于解释和准确。这样的框架将极大地促进神经成像、气候和基因组数据的分析,在这些数据中,先前的结构信息通常是可用的。现代技术经常产生海量数据,这样的数据洪流现在吞没了科学和公共生活的每个分支。因此,科学进步现在在很大程度上依赖于处理和分析复杂高维数据的能力。这些分析的核心是通过确定一小部分重要变量或获得原始测量的几个组合来降低数据维度的方法,有时会显著降低数据的维度。该项目旨在开发一系列新的降维方法来解决高维数据分析中的这些紧迫挑战。预计拟议的研究将在两个方面做出重大贡献:使科学家能够快速有效地从海量数据中提取有用的信息,同时使统计学科在理论、方法和应用方面的进步受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lexin Li其他文献
Sparse Low-rank Tensor Response Regression
稀疏低秩张量响应回归
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
W. Sun;Lexin Li - 通讯作者:
Lexin Li
Constrained regression model selection
- DOI:
10.1016/j.jspi.2008.02.006 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:
- 作者:
Lexin Li;Chih-Ling Tsai - 通讯作者:
Chih-Ling Tsai
On post dimension reduction statistical inference
- DOI:
10.1214/15-AOS1859 - 发表时间:
- 期刊:
- 影响因子:
- 作者:
Kyongwon Kim;Bing Li;Zhou Yu;Lexin Li - 通讯作者:
Lexin Li
High-dimensional Response Growth Curve Modeling for Longitudinal Neuroimaging Analysis
用于纵向神经影像分析的高维响应生长曲线建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lu Wang;Xiang Lyu;Zhengwu Zhang;Lexin Li - 通讯作者:
Lexin Li
Scalable Object Detection Using Deep but Lightweight CNN with Features Fusion
使用深度轻量级 CNN 和特征融合进行可扩展目标检测
- DOI:
10.1007/978-3-319-71607-7_33 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Qiaosong Chen;Shangsheng Feng;Pei Xu;Lexin Li;Ling Zheng;Jin Wang;Xin Deng - 通讯作者:
Xin Deng
Lexin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lexin Li', 18)}}的其他基金
I-Corps: Development of machine learning technology for matching under a variety of realistic and largescale preference structures
I-Corps:开发用于在各种现实和大规模偏好结构下进行匹配的机器学习技术
- 批准号:
2133869 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Graphical Modeling of Multivariate Functional Data
CIF:小型:协作研究:多元函数数据的图形建模
- 批准号:
2102227 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Tensor Envelope Model - A New Approach for Regressions with Tensor Data
合作研究:张量包络模型 - 张量数据回归的新方法
- 批准号:
1613137 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Sufficient Dimension Reduction for Missing, Censored, and Correlated Data
针对缺失、删失和相关数据进行充分降维
- 批准号:
0706919 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
- 批准号:
22K03874 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Bayesian Dimension Reduction for Dynamic Network Data with Many Observations
通过大量观察加速动态网络数据的贝叶斯降维
- 批准号:
2152774 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
RGPIN-2021-04073 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
- 批准号:
RGPIN-2021-02475 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2147546 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Stochastic Shielding for Dimension Reduction in Models of Biological Systems
生物系统模型降维的随机屏蔽
- 批准号:
2052109 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10196077 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10366073 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
CIF:Small: Theory and Methods for Simultaneous Feature Auto-grouping and Dimension Reduction in Supervised Multivariate Learning
CIF:Small:监督多元学习中同时特征自动分组和降维的理论和方法
- 批准号:
2105818 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant