Sufficient Dimension Reduction for Missing, Censored, and Correlated Data

针对缺失、删失和相关数据进行充分降维

基本信息

  • 批准号:
    0706919
  • 负责人:
  • 金额:
    $ 11.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

This proposal aims to develop new theory and methodology for sufficient dimension reduction (SDR). In particular, the research focuses on biostatistical problems which commonly include missing data, survival data, and longitudinal data analysis. The proposed methodology can effectively transform a high dimensional regression problem to a low dimensional projection, retain full regression information, and impose few or no probabilistic models. There are three components to this research. First, the investigator proposes a family of augmented inverse probability weighted SDR estimators when predictors have missing observations. This new approach allows a more general missing data mechanism than the existing solution and permits more flexible regression forms beyond the homoscedastic linear model. The second component of the research targets SDR for survival data, where the response of time to death or disease recurrence is subject to censoring. Viewing the censored response as a specific type of missing data, the investigator integrates an inverse probability weighted estimation strategy with a variety of SDR methods. Thirdly, the investigator studies a type of longitudinal data where measurements for all the study subjects are collected at the same scheduled time points. Both a population foundation and the associated estimation procedure are developed. All three components center around commonly encountered biostatistical problems and the development of the three components are interrelated.Modern technologies have pushed the frontier of science with the capability of generating and collecting data in large quantity and high dimensionality. Examples of large high dimensional data sets arise in a great number of research areas, such as environmental studies, human health and medical research, and homeland security. Sufficient dimension reduction (SDR) methodology effectively transforms a high dimensional data problem to a low dimensional one. Consequently, SDR allows many existing analytical methods, which used to be hindered by the curse of dimensionality, to now work for the high dimensional problems. In addition, informative visualization of the data often becomes possible after dimension reduction, facilitating both the understanding and the analysis of the data. By developing new theory and methodology for missing, censored, and correlated data, the investigator's research extends the boundary of SDR to biostatistics as well as other disciplines such as econometrics, finance and bioinformatics. The impact of this research is anticipated to be widespread, due to the prevalence of the high dimensional data and the urgent demand for effective analytical tools to tackle those problems.
本文旨在为充分降维(SDR)提供新的理论和方法。特别是,研究的重点是生物统计问题,通常包括缺失数据、生存数据和纵向数据分析。该方法可以有效地将高维回归问题转化为低维投影问题,保留完整的回归信息,并且不需要强加概率模型。这项研究有三个组成部分。首先,研究人员提出了一组增广逆概率加权SDR估计当预测有缺失的观测值。这种新方法允许比现有解决方案更通用的丢失数据机制,并允许比同方差线性模型更灵活的回归形式。研究的第二个组成部分针对生存数据的SDR,其中对死亡或疾病复发时间的反应受到审查。将审查响应视为特定类型的缺失数据,研究者将反概率加权估计策略与各种SDR方法相结合。第三,研究者研究一种纵向数据,在同一预定时间点收集所有研究对象的测量数据。建立了人口基础和相关的估计程序。所有三个组成部分都围绕着常见的生物统计学问题,这三个组成部分的发展是相互关联的。现代技术以产生和收集大量高维数据的能力推动了科学的前沿。大量高维数据集的例子出现在许多研究领域,例如环境研究、人类健康和医学研究以及国土安全。充分降维方法有效地将高维数据问题转化为低维数据问题。因此,SDR使得许多过去受维数诅咒所阻碍的现有分析方法,现在可以适用于高维问题。此外,在降维之后,数据的信息可视化往往成为可能,便于对数据的理解和分析。通过为缺失、审查和相关数据开发新的理论和方法,研究者的研究将SDR的边界扩展到生物统计学以及其他学科,如计量经济学、金融学和生物信息学。由于高维数据的普遍存在以及对有效分析工具的迫切需求,预计本研究的影响将是广泛的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lexin Li其他文献

Sparse Low-rank Tensor Response Regression
稀疏低秩张量响应回归
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Sun;Lexin Li
  • 通讯作者:
    Lexin Li
Constrained regression model selection
  • DOI:
    10.1016/j.jspi.2008.02.006
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lexin Li;Chih-Ling Tsai
  • 通讯作者:
    Chih-Ling Tsai
On post dimension reduction statistical inference
  • DOI:
    10.1214/15-AOS1859
  • 发表时间:
  • 期刊:
  • 影响因子:
  • 作者:
    Kyongwon Kim;Bing Li;Zhou Yu;Lexin Li
  • 通讯作者:
    Lexin Li
High-dimensional Response Growth Curve Modeling for Longitudinal Neuroimaging Analysis
用于纵向神经影像分析的高维响应生长曲线建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu Wang;Xiang Lyu;Zhengwu Zhang;Lexin Li
  • 通讯作者:
    Lexin Li
Scalable Object Detection Using Deep but Lightweight CNN with Features Fusion
使用深度轻量级 CNN 和特征融合进行可扩展目标检测
  • DOI:
    10.1007/978-3-319-71607-7_33
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaosong Chen;Shangsheng Feng;Pei Xu;Lexin Li;Ling Zheng;Jin Wang;Xin Deng
  • 通讯作者:
    Xin Deng

Lexin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lexin Li', 18)}}的其他基金

I-Corps: Development of machine learning technology for matching under a variety of realistic and largescale preference structures
I-Corps:开发用于在各种现实和大规模偏好结构下进行匹配的机器学习技术
  • 批准号:
    2133869
  • 财政年份:
    2021
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Graphical Modeling of Multivariate Functional Data
CIF:小型:协作研究:多元函数数据的图形建模
  • 批准号:
    2102227
  • 财政年份:
    2021
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Tensor Envelope Model - A New Approach for Regressions with Tensor Data
合作研究:张量包络模型 - 张量数据回归的新方法
  • 批准号:
    1613137
  • 财政年份:
    2016
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
New Dimension Reduction Approaches for Modern Scientific Data with High Dimensionality and Complex Structure
高维复杂结构现代科学数据降维新方法
  • 批准号:
    1106668
  • 财政年份:
    2011
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant

相似海外基金

Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
  • 批准号:
    22K03874
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accelerating Bayesian Dimension Reduction for Dynamic Network Data with Many Observations
通过大量观察加速动态网络数据的贝叶斯降维
  • 批准号:
    2152774
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
  • 批准号:
    RGPIN-2021-04073
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Discovery Grants Program - Individual
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
  • 批准号:
    RGPIN-2021-02475
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
  • 批准号:
    2147546
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Continuing Grant
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
  • 批准号:
    2210775
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Stochastic Shielding for Dimension Reduction in Models of Biological Systems
生物系统模型降维的随机屏蔽
  • 批准号:
    2052109
  • 财政年份:
    2021
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Continuing Grant
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
  • 批准号:
    10196077
  • 财政年份:
    2021
  • 资助金额:
    $ 11.99万
  • 项目类别:
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
  • 批准号:
    10366073
  • 财政年份:
    2021
  • 资助金额:
    $ 11.99万
  • 项目类别:
CIF:Small: Theory and Methods for Simultaneous Feature Auto-grouping and Dimension Reduction in Supervised Multivariate Learning
CIF:Small:监督多元学习中同时特征自动分组和降维的理论和方法
  • 批准号:
    2105818
  • 财政年份:
    2021
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了