Chemistry of Graphene Nanoribbons
石墨烯纳米带的化学
基本信息
- 批准号:249559513
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We firstly prepared structurally intact graphene, with a minimum of defects, from graphene oxide (GO). Now we want to increase the properties of this graphene by preventing few more defects. Systematic studies on the graphene quality and the structure of GO in dependence on the graphite type, morphology, existing defect density, amount of oxidant and especially the temperature of the process will be done.The reduction with different reducing methods and their influence on the defect density can now be examined for the first time and should lead to a ranking of reducing agents for GO. Another focus is on the analysis of residual defects, as well as the purity of the surfaces. The resulting material is used to build transparent and electrically conductive layers.Using field-effect transistors, the properties of the graphene will be modulated to open a band gap in graphene. We are mostly interested in non-covalent approaches.The non-destructive chemical functionalization of GO is essential for building high-performance graphene architectures. Defects must be avoided to use the full potential of graphene. With our improved graphene, it is possible to study chemical reactions and their effect on the resulting graphene quality. Information on the stability of the carbon skeleton as in acidic or basic medium can be investigated to identify reaction conditions that allow further non-destructive functionalization of GO.The azide-functionalized GO recently manufactured by us is so far the only example of a non-destructive functionalization of GO. Therefore, the reactivity of GO will be examined in depth, including towards halides and pseudo halides to provide a broader chemistry.Moreover, it will firstly be possible to gain new insights into the chemical structure of GO with different defect density with the help of solid-state NMR studies of 15N-labeled azido-GO. Another goal will be to increase the degree of functionalization of GO with azide. For this purpose, methods are being developed to activate GO. Subsequent reactions, such as click reactions will be studied under mild conditions for the first time. These materials provide a wide follow-up chemistry and will be tested in first trials for composite materials.A particular goal in the final phase of the project will be to use GO for energy storage. Such systems have great potential in terms of mobile applications, as well as electric vehicles.
我们首先从氧化石墨烯(GO)制备结构完整的石墨烯,具有最少的缺陷。现在我们想通过防止更多的缺陷来增加这种石墨烯的性能。系统研究了石墨种类、形貌、存在的缺陷密度、氧化剂用量、特别是工艺温度对石墨烯质量和GO结构的影响,首次考察了不同还原方法的还原效果及其对缺陷密度的影响,并对GO还原剂进行了排序。另一个重点是残余缺陷的分析以及表面的纯度。由此产生的材料用于构建透明和导电层。使用场效应晶体管,石墨烯的属性将被调制,以打开石墨烯的带隙。我们主要关注非共价方法,GO的非破坏性化学功能化对于构建高性能石墨烯结构至关重要。必须避免缺陷,以充分发挥石墨烯的潜力。通过我们改进的石墨烯,可以研究化学反应及其对所得石墨烯质量的影响。可以研究碳骨架在酸性或碱性介质中的稳定性信息,以确定允许GO进一步非破坏性官能化的反应条件。我们最近制造的叠氮化物官能化GO是迄今为止GO非破坏性官能化的唯一实例。因此,我们将深入研究GO的反应性,包括对卤化物和准卤化物的反应性,以提供更广泛的化学性质。此外,借助15N标记叠氮GO的固态NMR研究,我们将首次有可能获得对具有不同缺陷密度的GO化学结构的新见解。另一个目标将是增加GO与叠氮化物的官能化程度。为此目的,正在开发激活GO的方法。随后的反应,如点击反应将首次在温和的条件下进行研究。这些材料提供了广泛的后续化学成分,并将在复合材料的首次试验中进行测试。该项目最后阶段的一个特别目标是将GO用于储能。这样的系统在移动的应用以及电动车辆方面具有巨大的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Siegfried Eigler其他文献
Professor Dr. Siegfried Eigler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Siegfried Eigler', 18)}}的其他基金
Controlled Synthesis of Novel Functionalized Graphene Derivatives and Hybrid Structures
新型功能化石墨烯衍生物和杂化结构的受控合成
- 批准号:
392444269 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Fixation of pharmaceuticals on graphene surfaces
药物在石墨烯表面的固定
- 批准号:
470387051 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Molecular push-pull nanographene-derivatives as vis/NIR fluorescent dyes
作为可见/近红外荧光染料的分子推拉纳米石墨烯衍生物
- 批准号:
530311849 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
MoS2-graphene二维亚纳米通道膜构筑及溶剂传质与筛分机制研究
- 批准号:22378132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
- 批准号:62375044
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
转角In2Se3/Graphene异质结的界面调控及电子性质研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
g-C3N4/Graphene二维异质结光电阴极保护材料的构筑及应变调控光电效率研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
ZnO/Graphene复合量子点的表面特性调控、吸附作用及抗菌性能增强机制
- 批准号:51802185
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
三维多孔KCu7S4@C/graphene复合材料的可控制备及其储能性质的研究
- 批准号:21805247
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
超细晶graphene/Cu材料累积叠轧过程中组织演变机制和强化机制
- 批准号:51701174
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
三维多孔SnS@C/graphene复合材料可控制备与储钠性能研究
- 批准号:51604122
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
- 批准号:
2403736 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Open quantum dynamics of spin qubits on graphene nanoribbons
石墨烯纳米带上自旋量子位的开放量子动力学
- 批准号:
2744947 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
LEAPS-MPS: Seeking Superlubricity at Single Molecule Level on Graphene Nanoribbons
LEAPS-MPS:寻求石墨烯纳米带单分子水平的超润滑性
- 批准号:
2213366 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Strain-controlled Multi-Graphene-Nanoribbons-Base Dumbbell-Shape Photovoltaic Devices
应变控制的多层石墨烯纳米带基哑铃形光伏器件的开发
- 批准号:
21J11599 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Bottom-up synthesis of edge-engineered graphene nanoribbons
边缘工程石墨烯纳米带的自下而上合成
- 批准号:
2657922 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Bottom-up synthesis of oriented graphene nanoribbons on semiconductor substrates
半导体基底上定向石墨烯纳米带的自下而上合成
- 批准号:
20K15136 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthesis of optically active graphene nanoribbons
光学活性石墨烯纳米带的合成
- 批准号:
20K21192 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New Strategy for Synthesis of Atomically-Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
- 批准号:
2002912 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Graphene nanoribbons with large ferroelectricity
具有大铁电性的石墨烯纳米带
- 批准号:
20K21126 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Highly Efficient Synthesis of Graphene Nanoribbons in Designed Nanospaces
在设计的纳米空间中高效合成石墨烯纳米带
- 批准号:
20K21217 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)