CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
基本信息
- 批准号:2140392
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To understand how the brain functions and cure brain disorders, neuroscientists and clinicians need brain mapping devices. This project will develop the next generation of stretchable and transparent electrode arrays with unprecedented scale and resolution for brain recording and stimulation. This program will not only generate broad impacts in neuroscience through proactive device translation efforts in and beyond this project, but also create unique opportunities for novel neuroprosthetics. Through generating neural interfaces that will allow human-like performance in neuroprosthetic limbs and retinal prostheses with chronic biocompatibility, this program will impact more than 3 million people in the U.S. who live with upper limb loss, paralysis due to tetraplegia, blindness due to retinitis pigmentosa, or epilepsy. The proposed multidisciplinary educational/outreach program will engage hundreds of students through research experiences for underrepresented K-12 students, active undergraduate research involvements, graduate leadership training in device translation, and augmented engineering curricula.The research objective of this project is to investigate a set of foundational materials and device problems to for the first time establish a new unique device technology "multifunctional nanomesh microelectrodes" to shift the current paradigm of neural interface from rigid, opaque neuroelectrode arrays towards ultrasoft and transparent ones. Stretchable and transparent neuroelectrode arrays are two emerging neural interfaces due to their chronic biocompatibility and multimodal compatibility, respectively. However, both systems are currently confounded by their scalability since fundamentally, no existing electrode materials can simultaneously provide the required system-level properties of electrochemical interfaces, electrical conductance, and chronic biocompatibility in addition to the mandatory mechanical stretchability or optical transparency. Based on strong preliminary results, the PI hypothesizes that multifunctional nanomesh microelectrodes can possess an unprecedented combination of all functionalities needed for this aforementioned paradigm shift including low impedance, large stretchability, high transparency, and chronic biocompatibility. This project will holistically test this hypothesis through innovative theoretical design, experimental realization, and system demonstration/validation, and proactively integrate closed-loop device translation and experiential education activities. Vertically, the unprecedented combination of large throughput, chronic biocompatibility and multimodal compatibility of the resulting neural interface device will yield profound impacts to both our studying of complex networks in the central nervous system and interfacing with the brain. Laterally, the multifunctional-nanomesh device concept, theoretical framework, and fabrication knowledge can also be transformative in many other fields such as optoelectronics, energy storage, and nanogenerators if stretchability and/or transparency are desired.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了了解大脑的功能和治疗大脑疾病,神经科学家和临床医生需要大脑测绘设备。该项目将开发具有前所未有的规模和分辨率的下一代可拉伸和透明电极阵列,用于大脑记录和刺激。该项目不仅将在神经科学领域产生广泛的影响,而且还将为新型神经义肢创造独特的机会。通过生成神经接口,使具有慢性生物相容性的神经义肢和视网膜义肢具有类似人类的性能,该项目将影响美国300多万上肢丧失、四肢瘫痪、色素性视网膜炎失明或癫痫患者。拟议的多学科教育/推广计划将通过对代表性不足的K-12学生的研究经验、积极的本科生研究参与、研究生在设备翻译方面的领导力培训和增强工程课程,吸引数百名学生。本项目的研究目标是研究一系列基础材料和器件问题,首次建立一种新的独特器件技术“多功能纳米微电极”,将当前神经接口的范式从刚性、不透明的神经电极阵列转变为超软透明的神经电极阵列。可拉伸神经电极阵列和透明神经电极阵列分别由于其慢性生物相容性和多模态相容性而成为两种新兴的神经接口。然而,这两种系统目前都受到其可扩展性的困扰,因为从根本上说,除了强制性的机械拉伸性或光学透明性外,没有现有的电极材料可以同时提供所需的电化学界面、电导率和慢性生物相容性等系统级性能。基于强有力的初步结果,PI假设多功能纳米微电极可以拥有上述范式转变所需的所有功能的前所未有的组合,包括低阻抗,大拉伸性,高透明度和慢性生物相容性。本项目将通过创新的理论设计、实验实现、系统演示/验证等环节对这一假设进行全面检验,并积极将闭环设备翻译与体验式教育活动相结合。在垂直方向上,所产生的神经接口装置前所未有地结合了大通量、慢性生物相容性和多模态相容性,将对我们研究中枢神经系统的复杂网络和与大脑的接口产生深远的影响。此外,多功能纳米网器件概念、理论框架和制造知识也可以在光电子学、储能和纳米发电机等许多其他领域产生变革,如果需要可拉伸性和/或透明度。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crosstalk in Polymer Microelectrode Arrays.
- DOI:10.1007/s12274-021-3442-8
- 发表时间:2021-09
- 期刊:
- 影响因子:9.9
- 作者:Qiang Y;Gu W;Liu Z;Liang S;Ryu JH;Seo KJ;Liu W;Fang H
- 通讯作者:Fang H
Advanced materials for implantable neuroelectronics.
- DOI:10.1557/s43577-023-00540-5
- 发表时间:2023-05
- 期刊:
- 影响因子:5
- 作者:Qi Y;Kang SK;Fang H
- 通讯作者:Fang H
Special Section Guest Editorial: Hybrid Photonic/X Neurointerfaces.
- DOI:10.1117/1.nph.9.3.032201
- 发表时间:2022-07
- 期刊:
- 影响因子:5.3
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Fang其他文献
Industrial Convergence of Manufacturing and Producer Creative Industries—An Comparative Analysis of China and Czech
制造业与生产性创意产业的产业融合——中国与捷克的比较分析
- DOI:
10.12783/dtem/icerem2019/30823 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xiaoxiao Wang;Hui Fang - 通讯作者:
Hui Fang
Electron injection from a carboxylic anchoring dye to TiO2 nanoparticles in aprotic solvents
在非质子溶剂中从羧基锚定染料到 TiO2 纳米粒子的电子注入
- DOI:
10.1016/j.chemphys.2018.02.022 - 发表时间:
2018 - 期刊:
- 影响因子:2.3
- 作者:
Hui Fang;Yuhao Wu;Danielle L. Kuhn;Zachary Zander;B. DeLacy;Y. Rao;H. Dai - 通讯作者:
H. Dai
Novel Silica Filled Deep Eutectic Solvent Based Nanofluids for Energy Transportation
用于能源运输的新型二氧化硅填充深度共晶溶剂基纳米流体
- DOI:
10.1021/acssuschemeng.9b06179 - 发表时间:
2019-11 - 期刊:
- 影响因子:8.4
- 作者:
Changhui Liu;Hui Fang;Xinjian Liu;Ben Xu;Zhonghao Rao - 通讯作者:
Zhonghao Rao
Transcriptional regulation of corticotropin-releasing hormone gene in stress response
应激反应中促肾上腺皮质激素释放激素基因的转录调控
- DOI:
10.1016/j.ibror.2018.08.003 - 发表时间:
2018-08 - 期刊:
- 影响因子:2.6
- 作者:
Jiang Ning Zhou;Hui Fang - 通讯作者:
Hui Fang
GeoFairy: Towards a one-stop and location based Service for Geospatial Information Retrieval
GeoFairy:迈向一站式、基于位置的地理空间信息检索服务
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ziheng Sun;L. Di;Gil Heo;Chen Zhang;Hui Fang;P. Yue;Lili Jiang;Xicheng Tan;Liying Guo;Li Lin - 通讯作者:
Li Lin
Hui Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Fang', 18)}}的其他基金
Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films
合作研究:转移印刷单晶硅纳米网薄膜
- 批准号:
2146636 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films
合作研究:转移印刷单晶硅纳米网薄膜
- 批准号:
1905575 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
- 批准号:
1847215 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Small: Information Chain Support for Disaster Mitigation, Preparedness, Response and Recovery
III:小型:减灾、备灾、响应和恢复的信息链支持
- 批准号:
1423002 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
The space of actions - Neural circuits for transforming spatial representations into actions
动作空间 - 将空间表征转化为动作的神经回路
- 批准号:
EP/X034666/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: Transforming Implantable Neural Interfaces through Computing: From Circuits to Systems
职业:通过计算改变植入式神经接口:从电路到系统
- 批准号:
2317764 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EAGER: Transforming Optical Neural Network Accelerators with Stochastic Computing
EAGER:利用随机计算改造光神经网络加速器
- 批准号:
2139167 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
- 批准号:
1847215 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Transforming Implantable Neural Interfaces through Computing: From Circuits to Systems
职业:通过计算改变植入式神经接口:从电路到系统
- 批准号:
1844791 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Study of transforming growth factor β in melanocyte proliferation and differentiation of mouse neural crest cells via stem cell factor/KIT signaling
通过干细胞因子/KIT信号研究转化生长因子β在小鼠神经嵴细胞黑素细胞增殖和分化中的作用
- 批准号:
14570828 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EFFECTS OF REVERSE TRANSFORMING AGENTS ON NEURAL TUMORS
反转化剂对神经肿瘤的作用
- 批准号:
3033871 - 财政年份:1990
- 资助金额:
$ 50万 - 项目类别:
EFFECTS OF REVERSE TRANSFORMING AGENTS ON NEURAL TUMORS
反转化剂对神经肿瘤的作用
- 批准号:
3033869 - 财政年份:1989
- 资助金额:
$ 50万 - 项目类别:
EFFECTS OF REVERSE TRANSFORMING AGENTS ON NEURAL TUMORS
反转化剂对神经肿瘤的作用
- 批准号:
3033870 - 财政年份:1989
- 资助金额:
$ 50万 - 项目类别:
EXPRESSION OF TRANSFORMING GROWTH FACTOR-B HUMAN NEURAL CELL LINES
转化生长因子-B人神经细胞系的表达
- 批准号:
3813441 - 财政年份:
- 资助金额:
$ 50万 - 项目类别: