Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films

合作研究:转移印刷单晶硅纳米网薄膜

基本信息

  • 批准号:
    1905575
  • 负责人:
  • 金额:
    $ 27.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical description: Stretchable electronics have emerged as promising platforms for many important areas such as bio-mimetics, health monitoring, biomedical therapeutics, and soft robotics. This project investigates a set of foundational materials science problems to, for the first time, establish a new electronic materials platform - Si nanomeshes - for next-generation stretchable electronics. The transformative aspect of this project arises from the broad utility of the resulting design and engineering knowledge for nanomesh electronic materials, having profound impacts to not only fundamental materials science but also a broad range of applications in human-electronic interfaces and smart robots. The collaborative team also utilizes this project to integrate creative educational activities with cutting-edge research at multiple levels through: (1) engaging K-12 students via summer research and exhibiting at Oklahoma WONDERtorium Children's museum; (2) actively attracting undergraduate students for early research; and (3) the continuous curriculum development at both Northeastern University and Oklahoma State University to expand capacity in the soft electronic materials field. Technical description: Stretchable electronics research has long been facing the dichotomy between device performance and density. In the past decade, there has been significant progress in realizing stretchable semiconductors, however, existing approaches are still incomplete when high-density, high-performance stretchable electronics are needed. On the basis of strong preliminary results from the research team, the principal investigators hypothesize that with tailored nanomesh geometries and engineered sidewall surface states, Si nanomeshes can achieve simultaneously large stretchability, high mobility and high reliability that are needed for high-density stretchable electronics. Through both theoretical and experimental investigations, this project aims to investigate and establish the interrelationship of structure-processing-properties of Si nanomeshes for stretchable devices. Key structure variables to investigate include in-plane nanomesh pattern, out-of-plane materials stacking and sidewall surface states, while main properties targeted are mechanical flexibility, stretchability, and carrier transport mobilities. The project then achieves Si nanomeshes with desired mesh patterns through viable top-down approaches, prints and fabricates sidewall engineered Si-nanomesh based stretchable devices. A set of combined optical and electrical characterizations systematically investigate the properties of sidewall-engineered Si nanomeshes under stretching and scaling. Besides potential applications for high-performance stretchable electronics, this semiconductor nanomesh concept provides a new platform for materials engineering, and is expected to yield a new family of stretchable materials having tunable electronic and optoelectronic properties with customized nanostructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:可拉长的电子设备已成为许多重要领域的有前途的平台,例如生物模仿,健康监测,生物医学治疗和软机器人技术。该项目首次研究了一系列基础材料科学问题,以建立一个新的电子材料平台-SI纳米电 - 用于下一代可拉伸电子产品。该项目的变革性方面源于纳米什电子材料的最终设计和工程知识的广泛效用,对不仅基本材料科学产生了深远的影响,而且对人类电子接口和智能机器人的广泛应用产生了广泛的应用。合作团队还利用该项目将创意教育活动与多个层次的尖端研究结合在一起:(1)通过夏季研究和在俄克拉荷马州Wondertorium Wondertorium儿童博物馆展览来吸引K-12学生; (2)积极吸引本科生进行早期研究; (3)东北大学和俄克拉荷马州立大学的连续课程开发,以扩大软电子材料领域的能力。技术描述:可伸展的电子研究长期以来一直面临设备性能和密度之间的二分法。在过去的十年中,在实现可拉伸的半导体方面取得了重大进展,但是,当需要高密度,高性能拉伸电子设备时,现有方法仍然不完整。基于研究团队的强烈初步结果,首席研究人员假设,使用量身定制的纳米什几何形状和工程的侧壁表面状态,Si Nanomeshes可以同时实现高密度可拉伸电子设备所需的较大可扩展性,高移动性和高可靠性。通过理论和实验研究,该项目旨在调查和建立可伸缩设备的SI纳米电源结构处理过程的相互关系。要研究的关键结构变量包括平面内纳米什模式,平面外材料堆叠和侧面表面状态,而靶向的主要特性是机械柔韧性,可伸缩性和载流子传输迁移率。然后,该项目通过可行的自上而下的方法,打印和制造基于Si-Nanomesh的可伸缩设备,以所需的网格图案实现Si NanoMeshes。一组组合的光学和电气特征系统地研究了在拉伸和缩放下进行侧壁设计的Si纳米壳的特性。除了对高性能拉伸电子设备的潜在应用外,该半导体Nanomesh概念还提供了一个新的材料工程平台,预计将产生具有可调电子和光电的新型材料家族,并具有自定义的纳米结构。该纳米结构具有审查,反映了NSF的法定任务,并通过评估了范围的范围。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanomeshed Si nanomembranes
  • DOI:
    10.1038/s41528-019-0053-5
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Xun Han;Kyung Jin Seo;Yi Qiang;Zeping Li;S. Vinnikova;Yiding Zhong;Xuanyi Zhao;Peijie Hao;Shuodao Wang;Hui Fang
  • 通讯作者:
    Xun Han;Kyung Jin Seo;Yi Qiang;Zeping Li;S. Vinnikova;Yiding Zhong;Xuanyi Zhao;Peijie Hao;Shuodao Wang;Hui Fang
Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices
  • DOI:
    10.1115/1.4047777
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Vinnikova;H. Fang;Shuodao Wang
  • 通讯作者:
    S. Vinnikova;H. Fang;Shuodao Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Fang其他文献

Registration of Four Germplasm Lines of Upland Cotton with High Lint Yield
四个高皮棉陆地棉种质资源的登记
  • DOI:
    10.3198/jpr2018.12.0079crg
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Hui Fang;Kuang Zhang;D. Bowman;Don C. Jones;Vasu Kuraparthy
  • 通讯作者:
    Vasu Kuraparthy
Development of STS markers for Verticillium wilt resistance in cotton based on RGA–AFLP analysis
基于RGA-AFLP分析的棉花黄萎病抗性STS标记的开发
  • DOI:
    10.1007/s11032-014-0085-4
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hui Fang;Huiping Zhou;S. Sanogo;Jinfa Zhang
  • 通讯作者:
    Jinfa Zhang
Pharmacokinetics, Safety Profile, and Efficacy of Aliskiren in Pediatric Patients With Hypertension
阿利吉仑在儿科高血压患者中的药代动力学、安全性和疗效
  • DOI:
    10.1177/0009922813483875
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    J. Sullivan;D. Keefe;Yinong Zhou;L. Satlin;Hui Fang;Jing‐He Yan
  • 通讯作者:
    Jing‐He Yan
Investigation of the degree to which articles supported by research grants are published in open access health and life sciences journals
调查由研究资助支持的文章在开放获取健康和生命科学期刊上发表的程度
  • DOI:
    10.1007/s11192-015-1624-4
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ling Ling Wang;X. Liu;Hui Fang
  • 通讯作者:
    Hui Fang
Plasmonic patterned wide-field gap mode mechanism for surface enhanced Raman imaging
用于表面增强拉曼成像的等离子体图案化宽场间隙模式机制
  • DOI:
    10.1063/1.4973362
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Houkai Chen;Luping Du;Xiaojing Wu;Siwei Zhu;Yong Yang;Hui Fang;Xiaocong Yuan
  • 通讯作者:
    Xiaocong Yuan

Hui Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Fang', 18)}}的其他基金

CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
  • 批准号:
    2140392
  • 财政年份:
    2021
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films
合作研究:转移印刷单晶硅纳米网薄膜
  • 批准号:
    2146636
  • 财政年份:
    2021
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
  • 批准号:
    1847215
  • 财政年份:
    2019
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
III: Small: Information Chain Support for Disaster Mitigation, Preparedness, Response and Recovery
III:小型:减灾、备灾、响应和恢复的信息链支持
  • 批准号:
    1423002
  • 财政年份:
    2014
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant

相似国自然基金

EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
  • 批准号:
    82373030
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
  • 批准号:
    82300173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
RNA甲基化转移酶METTL7B介导lncRNA-MIR22HG的m6A修饰促进脑缺血再灌注损伤的机制研究
  • 批准号:
    82301476
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海洋来源二倍半萜MHO7靶向整合素β8/TGF-β轴调控EMT抑制三阴性乳腺癌转移的作用机制研究
  • 批准号:
    82304550
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SOX9在脑转移瘤血管选定生长中的作用及机制研究
  • 批准号:
    82303471
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2232875
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2230593
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了