Investigating Learning Progression Modules in Integrated Science Content Courses for Preservice Elementary Teachers

研究职前小学教师综合科学内容课程中的学习进展模块

基本信息

  • 批准号:
    2141952
  • 负责人:
  • 金额:
    $ 21.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This project aims to serve the national interest by supporting highly effective pre-kindergarten through sixth grade (PK-6) STEM teaching through improved preservice elementary teacher STEM education. Many elementary teachers—while certainly capable of high-quality science teaching—often do not have a strong background or sense of self-efficacy in science and have limited opportunities to work with PK-6 students’ developing science ideas in their teacher preparation programs. Additionally, 2- and 4-year college and university-based faculty who teach science content courses as part of preservice elementary teacher certification programs have limited opportunities to collaborate and consider how to best support preservice elementary teachers in their respective contexts. This IUSE Engaged Student Learning Track 1 project intends to adapt three research-based learning progressions (LPs) into six learning progression-based modules—LPMs. The LPs are representations of how students’ science ideas may increase in sophistication with instruction. The LPMs are to be implemented in two required and sequential integrated science courses to (a) support preservice teachers in developing their own science ideas and (b) scaffold their attention to PK-6 students’ thinking about science. Additionally, the project team intends to host two mini-conferences for 2- and 4-year Michigan STEM and science teacher educators to provide an environment in which to co-learn about supporting preservice elementary teachers in the context of recent changes to state certification standards. The project has three specific objectives. One is to develop, implement, and evaluate six LPMs in two integrated science courses for preservice elementary teachers. A second intent is to develop, host, and identify impacts of two mini-conferences as a context in which to share findings and materials of this project. The mini-conferences are also intended to engage post-secondary STEM and science teacher education faculty from 2- and 4-year institutions to seek solutions to common issues related to supporting preservice elementary teachers’ STEM learning. Finally, the project aims to use quantitative and qualitative methods to investigate if and how LPMs impact preservice elementary teachers’ science understandings. The research is designed to also investigate if and how preservice elementary teachers take up ideas from the LPMs during episodes of microteaching in their subsequent elementary science teaching methods class. While LPs have been previously researched in the context of preservice methods courses, they have not been implemented nor researched in the context of undergraduate science (content) courses. The research and evaluation included in this project has strong potential to advance knowledge about preservice elementary teachers’ science education and support highly effective PK-6 STEM teaching through improved preservice elementary teacher STEM education. Dissemination of project research findings and materials to local, state, and national contexts is expected to occur through publication of research articles in peer-reviewed journals, conference presentations, and a special page devoted to this NSF-funded project on the Education Department webpage of Alma College and through social media. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过改善职前小学教师STEM教育,支持高效的幼儿园至六年级(PK-6) STEM教学,为国家利益服务。许多小学教师,虽然有能力进行高质量的科学教学,但往往在科学方面没有很强的背景或自我效能感,并且在教师准备项目中与PK-6学生发展科学思想的机会有限。此外,作为职前小学教师认证项目的一部分,教授科学内容课程的2年制和4年制学院和大学教师合作的机会有限,无法考虑如何在各自的环境中最好地支持职前小学教师。IUSE参与式学生学习轨道1项目旨在将三个基于研究的学习过程(lp)调整为六个基于学习过程的模块- lpm。lp代表了学生的科学思想如何随着教学而变得更加复杂。lpm将在两门必修和连续的综合科学课程中实施,以(a)支持职前教师发展自己的科学理念,(b)引导他们关注小学六年级学生对科学的思考。此外,项目团队打算为2年和4年的密歇根STEM和科学教师教育者举办两次小型会议,以提供一个环境,在最近国家认证标准变化的背景下,共同学习如何支持职前小学教师。该项目有三个具体目标。一是为职前小学教师开发、实施和评估两门综合科学课程中的六个lpm。第二个目的是开发、主持和确定两个小型会议的影响,作为分享该项目的发现和材料的背景。这些小型会议还旨在吸引来自2年制和4年制院校的STEM和科学教师教育教师,以寻求与支持职前小学教师STEM学习相关的共同问题的解决方案。最后,本研究旨在运用定量与定性的方法,探讨职前小学教师的科学认知是否会受到lpm的影响,以及如何受到影响。本研究亦旨在调查职前小学教师在随后的基础科学教学方法课程中,是否以及如何在微教学环节中吸收lpm的思想。虽然lp之前已经在职前方法课程的背景下进行了研究,但它们还没有在本科科学(内容)课程的背景下实施或研究。本项目所包含的研究和评估具有很强的潜力,可以提高职前小学教师科学教育的认识,并通过改进职前小学教师STEM教育来支持高效的PK-6 STEM教学。项目研究成果和材料将通过在同行评议的期刊上发表研究文章、在会议上发表演讲,以及在阿尔玛学院教育部门的网页上和通过社交媒体专门为这个nsf资助的项目提供一个特别页面,传播到地方、州和全国范围内。NSF IUSE: EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。通过参与学生学习轨道,该计划支持有前途的实践和工具的创建,探索和实施。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Hancock其他文献

James Hancock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 21.12万
  • 项目类别:
    Standard Grant
Conference: A Learning Progression for K-12 Data Science Education
会议:K-12 数据科学教育的学习进展
  • 批准号:
    2325871
  • 财政年份:
    2023
  • 资助金额:
    $ 21.12万
  • 项目类别:
    Standard Grant
Application of deep learning and novel survival models to predict MCI-to-AD dementia progression
应用深度学习和新型生存模型预测 MCI 至 AD 痴呆的进展
  • 批准号:
    10725359
  • 财政年份:
    2023
  • 资助金额:
    $ 21.12万
  • 项目类别:
Learning-based 3D modeling of AMD to assess disease progression and response to treatment
基于学习的 AMD 3D 建模,用于评估疾病进展和治疗反应
  • 批准号:
    10592517
  • 财政年份:
    2023
  • 资助金额:
    $ 21.12万
  • 项目类别:
Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
  • 批准号:
    10799087
  • 财政年份:
    2023
  • 资助金额:
    $ 21.12万
  • 项目类别:
Deep Learning and Subtyping of Post-COVID-19 Lung Progression Phenotypes
COVID-19 后肺部进展表型的深度学习和亚型分析
  • 批准号:
    10634998
  • 财政年份:
    2023
  • 资助金额:
    $ 21.12万
  • 项目类别:
Developing and Testing a Learning Progression for Middle School Physical Science incorporating Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts
结合学科核心思想、科学和工程实践以及交叉概念,开发和测试中学物理科学的学习进度
  • 批准号:
    2201068
  • 财政年份:
    2022
  • 资助金额:
    $ 21.12万
  • 项目类别:
    Standard Grant
Machine Learning Methods to Predict Cancer Progression and Estimate Treatment Effectiveness
预测癌症进展和估计治疗效果的机器学习方法
  • 批准号:
    10559507
  • 财政年份:
    2022
  • 资助金额:
    $ 21.12万
  • 项目类别:
Machine learning to identify non-invasive mechanical testing approaches to predict skin composition, micro-structure and progression of ageing
机器学习识别非侵入性机械测试方法来预测皮肤成分、微观结构和衰老进程
  • 批准号:
    2750253
  • 财政年份:
    2022
  • 资助金额:
    $ 21.12万
  • 项目类别:
    Studentship
Progression in Primary Languages: A longitudinal study of the route and rate of language learning in primary school
主要语言的进步:小学语言学习路径和速度的纵向研究
  • 批准号:
    MR/V023470/1
  • 财政年份:
    2022
  • 资助金额:
    $ 21.12万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了