CAREER: Synergistic Approaches for Specialized Intelligent Assistance

职业:专业智能援助的协同方法

基本信息

  • 批准号:
    2142827
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Intelligent assistance systems currently lack the in-depth knowledge needed to automatically provide effective responses in specialized domains, such as emotional support on social media. Manually creating specialized knowledge bases or a one-fits-all model is expensive and infeasible. Existing research on intelligent assistance systems tackles three important sub-problems, user modeling, information extraction, and text generation, but considers these problems to be separate and so addresses them with separate methods. The underlying assumption is that there is no need for cross-utilization of the information needed to address or the knowledge learned by addressing each sub-problem. For instance, knowledge bases or knowledge graphs need no or little expansion by information extraction methods to obtain all the facts. Similarly, language models would have been well trained for generating an answer to the factual question and need no information from the other methods. This underlying assumption is too simplistic and does not hold for specialized intelligent assistance. This project addresses this limitation by discovering and utilizing synergies in user modeling, information extraction, and text generation. The PI designs, develops, and evaluates novel algorithms to assist individuals who are suffering from anxiety, depression, and other types of mental issues and who are seeking help on social media. Furthermore, this research supports the cross-disciplinary development of a diverse cohort of PhD and undergraduate students at Notre Dame.The proposed algorithms mutually enhance one another by sharing knowledge. The technical aims of the project are divided into three thrusts. The first thrust develops novel information extraction methods to enhance the construction of mental health ontologies from social media data. These methods convert unstructured social media data into structured data for efficient retrieval and learning. The second thrust develops novel natural language generation techniques to create textual responses with user models and ontologies, enabling personalization and knowledge awareness. The third thrust enhances user models with novel contextualized representation learning algorithms that learn from user behavior data and structured knowledge. The proposed algorithms preserve the spatio-temporal behavioral patterns of users and their generated content to more precisely reflect their situations and needs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。智能辅助系统目前缺乏在特定领域(如社交媒体上的情感支持)自动提供有效响应所需的深入知识。手动创建专门的知识库或一刀切的模型是昂贵且不可行的。现有的智能辅助系统研究主要涉及用户建模、信息提取和文本生成三个重要的子问题,但都认为这些问题是相互独立的,采用不同的方法来解决。潜在的假设是,不需要交叉利用解决每个子问题所需的信息或通过解决每个子问题学到的知识。例如,知识库或知识图不需要或很少需要通过信息提取方法进行扩展以获得所有事实。类似地,语言模型将被很好地训练为生成事实问题的答案,并且不需要来自其他方法的信息。这种潜在的假设过于简单化,并不适用于专门的智能辅助。本项目通过发现和利用用户建模、信息提取和文本生成中的协同作用来解决这一限制。PI设计、开发和评估新的算法,以帮助患有焦虑、抑郁和其他类型精神问题的人,以及在社交媒体上寻求帮助的人。此外,这项研究支持了圣母大学多样化的博士和本科生的跨学科发展。所提出的算法通过共享知识来相互增强。该项目的技术目标分为三个重点。第一个重点是开发新的信息提取方法,以增强从社交媒体数据中构建心理健康本体的能力。这些方法将非结构化的社交媒体数据转换为结构化数据,以便有效地检索和学习。第二个重点是开发新的自然语言生成技术,用用户模型和本体创建文本响应,实现个性化和知识感知。第三个重点是通过从用户行为数据和结构化知识中学习的新颖情境化表示学习算法来增强用户模型。该算法保留了用户及其生成内容的时空行为模式,以更准确地反映用户的情况和需求。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions
IfQA:反事实预设下的开放域问答数据集
  • DOI:
    10.18653/v1/2023.emnlp-main.515
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu, Wenhao;Jiang, Meng;Clark, Peter;Sabharwal, Ashish
  • 通讯作者:
    Sabharwal, Ashish
Generate rather than Retrieve: Large Language Models are Strong Context Generators
  • DOI:
    10.48550/arxiv.2209.10063
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Yu;Dan Iter;Shuohang Wang;Yichong Xu;Mingxuan Ju;Soumya Sanyal;Chenguang Zhu;Michael Zeng;Meng Jiang
  • 通讯作者:
    W. Yu;Dan Iter;Shuohang Wang;Yichong Xu;Mingxuan Ju;Soumya Sanyal;Chenguang Zhu;Michael Zeng;Meng Jiang
Semi-Supervised Graph Imbalanced Regression
Completing Taxonomies with Relation-Aware Mutual Attentions
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qingkai Zeng;Zhihan Zhang;Jinfeng Lin;Meng Jiang
  • 通讯作者:
    Qingkai Zeng;Zhihan Zhang;Jinfeng Lin;Meng Jiang
Exploring Contrast Consistency of Open-Domain Question Answering Systems on Minimally Edited Questions
探索开放域问答系统对最少编辑问题的对比度一致性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meng Jiang其他文献

span style=font-family:;font-size:12pt;Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin–Cr(III) complex/span
使用负载芦丁与 Cr(III) 复合物的天然微胶囊以新颖方式减少废水中的 Cr(VI)
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Yun Qi;Meng Jiang;Yuan-lu Cui;Lin Zhao;Shejiang Liu
  • 通讯作者:
    Shejiang Liu
Catching Social Media Advertisers with Strategy Analysis
Rotenone induces more serious learning and memory impairment than α-synuclein A30P does in Drosophila
鱼藤酮在果蝇中引起比 α-突触核蛋白 A30P 更严重的学习和记忆障碍
Explaining Tree Model Decisions in Natural Language for Network Intrusion Detection
用自然语言解释网络入侵检测的树模型决策
  • DOI:
    10.48550/arxiv.2310.19658
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noah Ziems;Gang Liu;John Flanagan;Meng Jiang
  • 通讯作者:
    Meng Jiang
Photochemical synthesis of porous triazine-/heptazine-based carbon nitride homojunction for efficient overall water splitting.
光化学合成多孔三嗪/七嗪基氮化碳同质结,用于有效的整体水分解。
  • DOI:
    10.1002/cssc.202202059
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Xiang Zhong;Yuxiang Zhu;Meng Jiang;Qiufan Sun;Jianfeng Yao
  • 通讯作者:
    Jianfeng Yao

Meng Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meng Jiang', 18)}}的其他基金

III: Small: Intelligent Scientific Text Analytics with Knowledge-Augmented Abductive Reasoning
III:小:具有知识增强归纳推理的智能科学文本分析
  • 批准号:
    2234058
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
III: Small: Comprehensive Methods to Learn to Augment Graph Data
III:小:学习增强图数据的综合方法
  • 批准号:
    2146761
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing STEM Online Learning by Augmenting Accessibility with Explanatory Captions and AI
协作研究:通过解释性字幕和人工智能增强可访问性,推进 STEM 在线学习
  • 批准号:
    2119531
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CRII: III: Beyond Similarity Learning: Complementarity Learning for Contextual Behavior Modeling
CRII:III:超越相似性学习:情境行为建模的互补学习
  • 批准号:
    1849816
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10884028
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10885376
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Dairy bioactive nutrients synergistic effects against inflammation: nutrigenomics and metabolomics approaches
乳制品生物活性营养素对抗炎症的协同作用:营养基因组学和代谢组学方法
  • 批准号:
    RGPIN-2016-05999
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
  • 批准号:
    2055097
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Dairy bioactive nutrients synergistic effects against inflammation: nutrigenomics and metabolomics approaches
乳制品生物活性营养素对抗炎症的协同作用:营养基因组学和代谢组学方法
  • 批准号:
    RGPIN-2016-05999
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Dairy bioactive nutrients synergistic effects against inflammation: nutrigenomics and metabolomics approaches
乳制品生物活性营养素对抗炎症的协同作用:营养基因组学和代谢组学方法
  • 批准号:
    RGPIN-2016-05999
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Dairy bioactive nutrients synergistic effects against inflammation: nutrigenomics and metabolomics approaches
乳制品生物活性营养素对抗炎症的协同作用:营养基因组学和代谢组学方法
  • 批准号:
    RGPIN-2016-05999
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Dairy bioactive nutrients synergistic effects against inflammation: nutrigenomics and metabolomics approaches
乳制品生物活性营养素对抗炎症的协同作用:营养基因组学和代谢组学方法
  • 批准号:
    RGPIN-2016-05999
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Dairy bioactive nutrients synergistic effects against inflammation: nutrigenomics and metabolomics approaches
乳制品生物活性营养素对抗炎症的协同作用:营养基因组学和代谢组学方法
  • 批准号:
    RGPIN-2016-05999
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Dairy bioactive nutrients synergistic effects against inflammation: nutrigenomics and metabolomics approaches
乳制品生物活性营养素对抗炎症的协同作用:营养基因组学和代谢组学方法
  • 批准号:
    RGPIN-2016-05999
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了