CAREER: Dynamically Reconfigurable Cavity Quantum Electrodynamics with Solid-State Quantum Emitters

职业:采用固态量子发射器的动态可重构腔量子电动力学

基本信息

项目摘要

Harnessing the quantum nature of light for more secure communication, faster computation, and more powerful sensing is on the horizon today following significant advances in quantum photonics in recent decades. A major outstanding challenge lies in designing interfaces between optical and matter-based quantum systems that can preserve fragile quantum states. Such interfaces are necessary for a wide variety of tasks, including generating light suitable for carrying quantum information, storing and retrieving photonic qubits, and mediating entangling operations between photons. Achieving these goals generally requires enhancing the strength of the light-atom interaction, which is naturally too weak for efficient quantum devices. A common method to enhance this interaction is to couple the atoms to an optical resonator or cavity, typically a precisely fabricated structure designed for a single application. The research proposed here aims to develop a dynamically reconfigurable platform for coupling atoms to an optical cavity by using highly coherent, cryogenically-cooled rare-earth atom dopants in a solid-state host that can be spectrally and spatially tailored to form the cavity mirrors and the coupled atomic ensemble. This flexible platform can be used for a variety of important applications, such as efficient and long-lived quantum memory for light, and can be incorporated into integrated optical devices. In addition, a new undergraduate research fellowship that targets students interested in quantum science and engineering from underrepresented backgrounds will be developed, with a focus on ensuring supportive mentorship that extends beyond the summer research experiences.Technical: The objective of the proposed work is to develop a dynamically reconfigurable cavity quantum electrodynamics system based on a spatially and spectrally tailored ensemble of highly coherent, cryogenically-cooled, rare-earth atom dopants in a solid-state host, which forms both the cavity mirrors and the coupled atoms. Rare-earth atoms in solids at cryogenic temperatures exhibit highly coherent atom-like behavior and an energy level structure that makes them suited to precise tailoring of their spatial and spectral profile via spectral hole-burning. A one-dimensional array of alternating spectral profiles acts as a highly reflective optical mirror. Furthermore, the presence of multiple metastable energy levels enables dynamic, optically controlled switching of the mirror between reflective and transmissive states via electromagnetically induced transparency. Additional spectral and spatial tailoring can enable more complex structures including optical cavities that can be coupled to each other and to ensembles of atoms. Thus a fully reconfigurable cavity quantum electrodynamics system is formed without any fabricated structures, with the additional feature of dynamically switchable cavity mirrors. This scheme will enable dramatic improvement in the efficiency of rare-earth ensemble-based optical quantum memory to store photonic qubits. Rare-earth atoms are already one of the most promising platforms for quantum memory and coupling a rare-earth ensemble to an optical cavity addresses outstanding challenges related to making compact devices with long storage times without sacrificing storage efficiency. And doing so in a way that is reconfigurable without the need to fabricate a cavity makes this a flexible platform for a wide variety of useful quantum devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用光的量子性质进行更安全的通信,更快的计算和更强大的传感,是近几十年来量子光子学取得重大进展后的今天。一个主要的突出挑战在于设计光学和基于物质的量子系统之间的接口,以保持脆弱的量子态。这样的接口对于各种各样的任务都是必要的,包括产生适合携带量子信息的光,存储和检索光子量子比特,以及调解光子之间的纠缠操作。实现这些目标通常需要增强光-原子相互作用的强度,这对于有效的量子器件来说自然太弱了。增强这种相互作用的常用方法是将原子耦合到光学谐振腔或腔,通常是为单一应用设计的精确制造的结构。本文提出的研究旨在开发一种动态可重构的平台,用于通过在固态主机中使用高度相干的低温冷却的稀土原子掺杂剂将原子耦合到光学腔,该固态主机可以在光谱和空间上定制以形成腔镜和耦合原子系综。这种灵活的平台可用于各种重要的应用,例如高效和长寿命的光量子存储器,并可集成到集成光学器件中。此外,还将开发一个新的本科生研究奖学金,面向来自代表性不足背景的对量子科学和工程感兴趣的学生,重点是确保提供支持性的导师,而不仅仅是夏季的研究经验。本论文的目标是发展一个动态可重构的腔量子电动力学系统,低温冷却,稀土原子掺杂剂在固态主机,形成腔镜和耦合原子。在低温下,固体中的稀土原子表现出高度相干的类原子行为和能级结构,使它们适合于通过光谱烧孔精确定制其空间和光谱轮廓。交替光谱轮廓的一维阵列充当高反射光学镜。此外,多个亚稳态能级的存在使得能够经由电磁感应透明性在反射状态和透射状态之间动态地、光学地控制反射镜的切换。额外的光谱和空间定制可以实现更复杂的结构,包括可以彼此耦合和耦合到原子系综的光学腔。因此,一个完全可重构的腔量子电动力学系统的形成没有任何制造结构,与动态切换腔镜的附加功能。该方案将使基于稀土系综的光量子存储器存储光子量子比特的效率得到显着提高。稀土原子已经是量子存储器最有前途的平台之一,将稀土系综耦合到光腔解决了与制造具有长存储时间的紧凑设备而不牺牲存储效率相关的突出挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Goldschmidt其他文献

Elizabeth Goldschmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Development of hardware design system for high-speed dynamically reconfigurable devices
高速动态可重构器件硬件设计系统开发
  • 批准号:
    23K11032
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313083
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Dynamically Reconfigurable Adaptive Wireless Energy Transfer and Harvesting
动态可重构自适应无线能量传输和采集
  • 批准号:
    RGPIN-2019-07102
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Beyond direct-write: Dynamically reconfigurable holographic multibeam interference lithography for high-throughput nanomanufacturing
超越直写:用于高通量纳米制造的动态可重构全息多束干涉光刻
  • 批准号:
    2719982
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Beyond direct-write: Dynamically reconfigurable holographic multibeam interference lithography for high-throughput nanomanufacturing
超越直写:用于高通量纳米制造的动态可重构全息多束干涉光刻
  • 批准号:
    EP/V055003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Dynamically reconfigurable wet robotics powered by self organization of molecular artificial muscle
由分子人造肌肉自组织驱动的动态可重构湿机器人
  • 批准号:
    22H04951
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Dynamically Reconfigurable Adaptive Wireless Energy Transfer and Harvesting
动态可重构自适应无线能量传输和采集
  • 批准号:
    RGPIN-2019-07102
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamically Reconfigurable Adaptive Wireless Energy Transfer and Harvesting
动态可重构自适应无线能量传输和采集
  • 批准号:
    RGPIN-2019-07102
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Exploration of Dynamically Reconfigurable Topological Insulators for Enabling Next-Generation Acoustic-Based Logic and Signal Processing
探索动态可重构拓扑绝缘体以实现下一代基于声学的逻辑和信号处理
  • 批准号:
    1929849
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了