CAREER: New Frontiers in Quantum Protocols, Operator Algebras, and Property Testing

职业:量子协议、算子代数和属性测试的新领域

基本信息

  • 批准号:
    2144219
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Over the past decade, the study of quantum multiprover interactive proofs (QMIPs) has deepened the understanding of the power of quantum entanglement as an information-processing resource. This research led to a recent quantum complexity result, known as MIP* = RE, which characterizes the computational power of QMIPs. Surprisingly, this characterization yields answers to longstanding problems in mathematical physics and operator algebras. Motivated by this, this project aims to explore the fascinating connections between complexity theory, quantum information, and pure mathematics. The overarching theme is to investigate how classical users can test and characterize complex quantum objects, with applications ranging from cryptography to operator algebras. These investigations will spur interdisciplinary research across computer science, physics, and mathematics. In addition to leading the research, the PI will disseminate this subject matter to a wide variety of communities (both academic and industrial). The PI will also participate in outreach and education activities, both in-person and online, to promote interest in quantum information science in high school and undergraduate students.This project will pursue three main directions. First, the PI will develop novel protocols that allow a classical user to verify complex quantum entanglement in untrusted quantum devices, with applications to entanglement theory and testing of noisy quantum computers. Second, the PI will further develop the techniques used in the proof of MIP* = RE to address unsolved questions in mathematics related to the resolutions of Tsirelson’s problem and Connes’ embedding problem. Third, the PI will initiate the systematic study of a noncommutative model of property testing, which will examine how local classical tests can constrain complex, quantum objects. This research will build upon prior work of the PI on interactive protocols for testing quantum entangled devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,量子多验证器交互式证明(QMIP)的研究加深了对量子纠缠作为信息处理资源的力量的理解。这项研究导致了最近的量子复杂性结果,称为MIP* = RE,它表征了QMIP的计算能力。令人惊讶的是,这种特征产生了数学物理和算子代数中长期存在的问题的答案。受此启发,该项目旨在探索复杂性理论,量子信息和纯数学之间的迷人联系。首要主题是研究经典用户如何测试和表征复杂的量子对象,应用范围从密码学到算子代数。这些调查将刺激计算机科学、物理学和数学领域的跨学科研究。除了领导研究外,PI还将向各种各样的社区(学术和工业)传播这一主题。PI还将参与面对面和在线的推广和教育活动,以提高高中和本科生对量子信息科学的兴趣。首先,PI将开发新的协议,允许经典用户在不可信的量子设备中验证复杂的量子纠缠,并将其应用于纠缠理论和噪声量子计算机的测试。第二,PI将进一步开发用于证明MIP* = RE的技术,以解决与Tsirelson问题和Connes嵌入问题的解决方案相关的数学中未解决的问题。第三,PI将启动一个非交换性质测试模型的系统研究,这将研究局部经典测试如何约束复杂的量子对象。这项研究将建立在PI之前的工作上,用于测试量子纠缠设备的交互协议。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unitary Property Testing Lower Bounds by Polynomials
通过多项式测试单一属性下界
Testing and Learning Quantum Juntas Nearly Optimally
近乎最佳地测试和学习量子 Junta
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Yuen其他文献

On the Pauli Spectrum of QAC0
关于 QAC0 的泡利谱
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shivam Nadimpalli;Natalie Parham;Francisca Vasconcelos;Henry Yuen
  • 通讯作者:
    Henry Yuen
An Efficient Quantum Parallel Repetition Theorem and Applications
一种高效的量子并行重复定理及其应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Bostanci;Luowen Qian;Nicholas Spooner;Henry Yuen
  • 通讯作者:
    Henry Yuen
Midterm oncological outcome and clinicopathological characteristics of anterior prostate cancers treated by endoscopic extraperitoneal radical prostatectomy
内镜腹膜外前列腺癌根治术治疗前前列腺癌的中期肿瘤学结局及临床病理特征
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    D. Good;Grant D. Stewart;P. Zakikhani;Henry Yuen;Antony C. P. Riddick;Prasad R. Bollina;M. O'Donnell;J. Stolzenburg;S. A. McNeill
  • 通讯作者:
    S. A. McNeill
COPENHAGEN 2022 CONNES
2022 年哥本哈根会议
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Paulsen;Zhengfeng Ji;Anand Natarajan;Thomas Vidick;John Wright;Henry Yuen;V. Paulsen
  • 通讯作者:
    V. Paulsen
Pseudorandom unitaries with non-adaptive security
具有非自适应安全性的伪随机酉
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tony Metger;Alexander Poremba;Makrand Sinha;Henry Yuen
  • 通讯作者:
    Henry Yuen

Henry Yuen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Yuen', 18)}}的其他基金

Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329939
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Interaction of Turbulent Wind with a System of Deep Water Waves
湍流风与深水波浪系统的相互作用
  • 批准号:
    8415988
  • 财政年份:
    1984
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Interaction Between a Turbulent Wind and Finite Amplitude Water Waves
湍流风与有限振幅水波之间的相互作用
  • 批准号:
    8100517
  • 财政年份:
    1981
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: New Frontiers of Private Learning and Synthetic Data
职业:私人学习和合成数据的新领域
  • 批准号:
    2339775
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Continuous-time Open Quantum Systems
职业:连续时间开放量子系统的新领域
  • 批准号:
    2238766
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
  • 批准号:
    2239869
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
  • 批准号:
    2235233
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Bayesian Deep Learning
职业:贝叶斯深度学习的新领域
  • 批准号:
    2145492
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
  • 批准号:
    2146343
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Analytic Frontiers for Symmetric Cryptography
职业:对称密码学的新分析前沿
  • 批准号:
    2046540
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers for Frobenius, Singularity Theory, Differential Operators, and Local Cohomology
职业生涯:弗罗贝尼乌斯、奇点理论、微分算子和局部上同调的新领域
  • 批准号:
    1945611
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Computing on Private Data
职业:私有数据计算的新领域
  • 批准号:
    1942789
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Time Series Analysis
职业:时间序列分析的新领域
  • 批准号:
    1455172
  • 财政年份:
    2015
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了