CAREER: Nonlinear Factor Analysis for Sensing and Learning
职业:传感和学习的非线性因子分析
基本信息
- 批准号:2144889
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Factor analysis (FA) tools, e.g., nonnegative matrix factorization (NMF) and independent component analysis (ICA), are the cornerstones of many sensing and learning applications, e.g., document analytics, hyperspectral imaging, brain signal processing, and representation learning. FA tools are designed to discover meaningful latent information from data (e.g., prominent topics in a collection of documents) in an unsupervised manner. However, classic FA models do not consider unknown nonlinear distortions that often happen in data acquisition/generation, and thus frequently fail to produce sensible results in critical scenarios. This project will develop a suite of nonlinear factor analysis (NFA) tools that will transform existing FA paradigms by effectively and provably handling unknown nonlinearities. Results from this project will significantly advance the understanding of fundamental properties and computational aspects of various NFA models, including model identifiability, sample complexity, noise robustness and algorithm convergence---which are largely uncharted research territories. The products will boost the performance of a broad spectrum of sensing and learning tasks in science and engineering where unknown nonlinear distortions often arise, e.g., remote sensing, brain-computer interface, vision/image/text data analytics, bioinformatics, geoscience, biology, and ecology. The integrated education plan of developing visually appealing FA and NFA-based course modules and software will alleviate “math anxiety” in K-12 and college. The precollege outreach programs and undergraduate research plans will effectively foster early interest in mathematics and enhance underrepresented students’ participation in STEM disciplines. These education activities will lead to a diversified and mathematically competitive future workforce for signal and machine intelligence.This project will develop a unified analytical and computational framework for learning various challenging and realistic NFA models. Specifically, Thrust I will develop a unified functional equation-based framework for provable unsupervised nonlinear model identification under various NFA settings. Thrust II will make important advances towards understanding NFA under realistic conditions (e.g., finite sample and noisy cases), and will offer effective NFA optimization algorithms with performance guarantees. Thrust III will carefully evaluate the proposed approaches over timely and important sensing and learning tasks including hyperspectral imaging, biosensor signal processing, and unsupervised machine learning. These thrusts will produce fundamental results in both theory and algorithms addressing critical challenges in NFA. The new functional equation-based analytical framework offers a theoretical underpinning for various NFA model identification problems that are beyond the reach of existing tools. The new NFA performance characterization tools under realistic settings (e.g., finite data) will be a substantial leap forward from existing works that all use overly ideal assumptions (e.g., unlimited data). The computational framework through an integration of statistical analysis, neural network learning, and nonlinear programming will offer provable and flexible algorithms for NFA problems, which all currently lack guaranteed solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
因素分析(FA)工具,例如,非负矩阵分解(NMF)和独立分量分析(伊卡)是许多感测和学习应用的基石,例如,文档分析、高光谱成像、大脑信号处理和表征学习。FA工具旨在从数据中发现有意义的潜在信息(例如,文档集合中的突出主题)。然而,经典的FA模型不考虑未知的非线性失真,经常发生在数据采集/生成,因此经常无法产生合理的结果,在关键的情况下。这个项目将开发一套非线性因素分析(NFA)工具,通过有效地和可证明地处理未知的非线性来改变现有的FA范式。从这个项目的结果将显着推进各种NFA模型的基本属性和计算方面的理解,包括模型可识别性,样本复杂性,噪声鲁棒性和算法收敛---这在很大程度上是未知的研究领域。这些产品将提高科学和工程领域中广泛的传感和学习任务的性能,这些任务中经常出现未知的非线性失真,例如,遥感、脑机接口、视觉/图像/文本数据分析、生物信息学、地球科学、生物学和生态学。开发视觉上吸引人的FA和NFA为基础的课程模块和软件的综合教育计划将减轻K-12和大学的“数学焦虑”。大学预科外展计划和本科生研究计划将有效地培养早期对数学的兴趣,并提高代表性不足的学生对STEM学科的参与。这些教育活动将为未来的信号和机器智能提供多样化和具有数学竞争力的劳动力。该项目将为学习各种具有挑战性和现实性的NFA模型开发统一的分析和计算框架。具体来说,Thrust I将开发一个统一的基于函数方程的框架,用于在各种NFA设置下可证明的无监督非线性模型识别。推力II将在现实条件下(例如,有限样本和噪声情况下),并将提供有效的NFA优化算法的性能保证。Thrust III将仔细评估所提出的方法,以完成及时和重要的传感和学习任务,包括高光谱成像、生物传感器信号处理和无监督机器学习。这些推力将在理论和算法上产生根本性的结果,解决NFA的关键挑战。新的功能方程为基础的分析框架提供了一个理论基础的各种NFA模型识别问题,是超出了现有的工具。新的NFA性能表征工具在现实环境下(例如,有限数据)将是从全部使用过于理想的假设(例如,无限数据)。通过整合统计分析,神经网络学习和非线性规划的计算框架将为NFA问题提供可证明和灵活的算法,这些问题目前都缺乏有保证的解决方案。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Finite-Sample Identifiability of Contrastive Learning-Based Nonlinear Independent Component Analysis
- DOI:10.48550/arxiv.2206.06593
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Qi Lyu;Xiao Fu
- 通讯作者:Qi Lyu;Xiao Fu
Provable Subspace Identification Under Post-Nonlinear Mixtures
- DOI:10.48550/arxiv.2210.07532
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Qi Lyu;Xiao Fu
- 通讯作者:Qi Lyu;Xiao Fu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Fu其他文献
Using Petroleum and Biomass-Derived Fuels in Duel-fuel Diesel Engines
在双燃料柴油发动机中使用石油和生物质衍生燃料
- DOI:
10.1007/978-81-322-2211-8_11 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
S. Aggarwal;Xiao Fu - 通讯作者:
Xiao Fu
云计算中基于共享机制和群体智能优化算法的任务调度方案 (Task Scheduling Scheme Based on Sharing Mechanism and Swarm Intelligence Optimization Algorithm in Cloud Computing)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiao Fu - 通讯作者:
Xiao Fu
Fast algorithm based on the Hilbert transform for high-speed absolute distance measurement using a frequency scanning interferometry method
基于希尔伯特变换的快速算法,采用频率扫描干涉法进行高速绝对距离测量
- DOI:
10.1364/ao.447750 - 发表时间:
2022 - 期刊:
- 影响因子:1.9
- 作者:
Xiuming Li;Fajie Duan;Xiao Fu;Ruijia Bao;Jiajia Jiang;Cong Zhang - 通讯作者:
Cong Zhang
Localization algorithm based on minimum condition number for wireless sensor networks
基于最小条件数的无线传感器网络定位算法
- DOI:
10.1007/s11767-013-2115-5 - 发表时间:
2013-01 - 期刊:
- 影响因子:0
- 作者:
Du Xiaoyu;Sun Lijuan;Xiao Fu;Wang Ruchuan - 通讯作者:
Wang Ruchuan
Tensor-Based Parameter Estimation of Double Directional Massive Mimo Channel with Dual-Polarized Antennas
基于张量的双极化天线双向大规模MIMO信道参数估计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Cheng Qian;Xiao Fu;N. Sidiropoulos;Ye Yang - 通讯作者:
Ye Yang
Xiao Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao Fu', 18)}}的其他基金
CIF: Small: Latent Neural Factor Models for Radio Cartography From Bits
CIF:小:来自 Bits 的无线电制图的潜在神经因子模型
- 批准号:
2210004 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCSS: Block-term Tensor Tools for Multi-aspect Sensing and Analysis
CCSS:用于多方面传感和分析的块项张量工具
- 批准号:
2024058 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003082 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Small: Labeling Massive Data from Noisy, Incomplete and Crowdsourced Annotations
III:小:标记来自嘈杂、不完整和众包注释的海量数据
- 批准号:
2007836 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Multimodal Sensing and Analytics at Scale: Algorithms and Applications
协作研究:大规模多模态传感和分析:算法和应用
- 批准号:
1808159 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
- 批准号:
EP/X040852/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Fellowship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
- 批准号:
DP240101494 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
- 批准号:
EP/Z000297/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: Bridging Infrared and Visible Photonics with Chip-ready Nonlinear and Quantum Metadevices
职业:通过芯片就绪的非线性和量子元设备桥接红外和可见光光子学
- 批准号:
2339271 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant