Collaborative Research: Multimodal Sensing and Analytics at Scale: Algorithms and Applications
协作研究:大规模多模态传感和分析:算法和应用
基本信息
- 批准号:1808159
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Finding highly correlated latent factors in multimodal signals and data: Scalable algorithms and applications in sensing, imaging, and language processingAbstract: Multimodal signals and data arise naturally in many walks of science and engineering, and our digital society presents ever-increasing opportunities to collect and extract useful information from such data. For example, brain magnetic resonance imaging and electro-encephalography are two modes of sensing brain activity that can offer different "views" of the same set of patients (entities). Co-occurrence frequencies of a given set of words in different languages is another example. Crime, poverty, welfare, income, tax, school, unemployment, and other types of social data offer different views of a given set of municipalities. Integrating multiple views to extract meaningful common information is of great interest, and finds a vast amount of timely applications -- in brain imaging, machine translation, landscape change detection in remote sensing, and social science research, to name a few. However, existing multiview analytics tools -- notably (generalized) canonical correlation analysis [(G)CCA] -- are struggling to keep pace with the size of today's datasets, and the problem is only getting worse. Furthermore, the complex structure and dynamic nature of some of the underlying phenomena are not accounted for in classical GCCA. This project will provide much needed scalable and flexible computational tools for GCCA-based multimodal sensing and analytics, thereby benefiting a large variety of scientific and engineering applications. It will produce a framework allowing for plug-and-play incorporation of application-specific prior information, and distributed implementation. Beyond linear and batch GCCA, nonlinear GCCA and streaming GCCA will be considered. These are appealing and timely for many applications, but associated computational tools are sorely missing.In terms of theory and methods, many key aspects of GCCA (such as convergence properties, distributed implementation, and streaming variants) are still poorly understood. The research will provide a set of high-performance computational tools that are backed by advanced optimization theory and rigorous convergence guarantees. The research will evolve along the following synergistic thrusts: 1) scalable and stochastic GCCA algorithms; 2) distributed, streaming and nonlinear GCCA algorithms; and 3) validation, using a series of timely and important applications in remote sensing, brain imaging, natural language processing, and sensor array processing. Devising scalable, flexible, streaming, and nonlinear GCCA algorithms is very well-motivated for modern sensing and analytics problems which involve rapidly increasing amounts of data with unknown underlying dynamics. Using GCCA for large-scale dynamic and complex data also poses very challenging and exciting modeling and optimization problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:多模态信号和数据自然出现在科学和工程的许多领域,我们的数字社会提供了越来越多的机会从这些数据中收集和提取有用的信息。例如,脑磁共振成像和脑电图是感知大脑活动的两种模式,可以为同一组患者(实体)提供不同的“视图”。不同语言中给定的一组单词的共现频率是另一个例子。犯罪、贫困、福利、收入、税收、学校、失业和其他类型的社会数据提供了一组给定市政当局的不同观点。整合多个视图以提取有意义的共同信息是非常有趣的,并且在脑成像,机器翻译,遥感景观变化检测和社会科学研究中找到了大量及时的应用,仅举几例。然而,现有的多视图分析工具——尤其是(广义)典型相关分析[(G)CCA]——正在努力跟上当今数据集的规模,而且问题只会变得更糟。此外,一些潜在现象的复杂结构和动态性质在经典GCCA中没有得到考虑。该项目将为基于gca的多模态传感和分析提供急需的可扩展和灵活的计算工具,从而使各种科学和工程应用受益。它将产生一个框架,允许将特定于应用程序的先验信息即插即用合并,并进行分布式实现。除了线性和批量GCCA之外,还将考虑非线性GCCA和流GCCA。对于许多应用程序来说,这些都很有吸引力,也很及时,但相关的计算工具却严重缺失。就理论和方法而言,GCCA的许多关键方面(如收敛特性、分布式实现和流变体)仍然知之甚少。该研究将提供一套高性能的计算工具,以先进的优化理论和严格的收敛保证为后盾。该研究将沿着以下协同方向发展:1)可扩展和随机GCCA算法;2)分布式、流化和非线性GCCA算法;3)验证,在遥感、脑成像、自然语言处理、传感器阵列处理等一系列及时而重要的应用。设计可扩展的、灵活的、流的和非线性的GCCA算法对于现代传感和分析问题是非常有动力的,这些问题涉及到快速增加的数据量和未知的潜在动态。将GCCA应用于大规模动态和复杂数据也提出了非常具有挑战性和令人兴奋的建模和优化问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recovering Joint PMF from Pairwise Marginals
从成对边缘恢复联合 PMF
- DOI:10.1109/ieeeconf51394.2020.9443425
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ibrahim, Shahana;Fu, Xiao
- 通讯作者:Fu, Xiao
Hyperspectral Super-Resolution via Global–Local Low-Rank Matrix Estimation
- DOI:10.1109/tgrs.2020.2979908
- 发表时间:2019-07
- 期刊:
- 影响因子:8.2
- 作者:Ruiyuan Wu;Wing-Kin Ma;Xiao Fu;Qiang Li
- 通讯作者:Ruiyuan Wu;Wing-Kin Ma;Xiao Fu;Qiang Li
Nonlinear Multiview Analysis: Identifiability and Neural Network-based Implementation
- DOI:10.1109/sam48682.2020.9104404
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Qi Lyu;Xiao Fu
- 通讯作者:Qi Lyu;Xiao Fu
Stochastic Optimization for Coupled Tensor Decomposition with Applications in Statistical Learning
- DOI:10.1109/dsw.2019.8755797
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Shahana Ibrahim;Xiao Fu
- 通讯作者:Shahana Ibrahim;Xiao Fu
Communication-Efficient Distributed MAX-VAR Generalized CCA via Error Feedback-Assisted Quantization
- DOI:10.1109/icassp43922.2022.9746607
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Sagar Shrestha;Xiao Fu
- 通讯作者:Sagar Shrestha;Xiao Fu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Fu其他文献
Fast algorithm based on the Hilbert transform for high-speed absolute distance measurement using a frequency scanning interferometry method
基于希尔伯特变换的快速算法,采用频率扫描干涉法进行高速绝对距离测量
- DOI:
10.1364/ao.447750 - 发表时间:
2022 - 期刊:
- 影响因子:1.9
- 作者:
Xiuming Li;Fajie Duan;Xiao Fu;Ruijia Bao;Jiajia Jiang;Cong Zhang - 通讯作者:
Cong Zhang
Localization algorithm based on minimum condition number for wireless sensor networks
基于最小条件数的无线传感器网络定位算法
- DOI:
10.1007/s11767-013-2115-5 - 发表时间:
2013-01 - 期刊:
- 影响因子:0
- 作者:
Du Xiaoyu;Sun Lijuan;Xiao Fu;Wang Ruchuan - 通讯作者:
Wang Ruchuan
Measurement of acoustic properties for passive-material samples using multichannel inverse filter
使用多通道逆滤波器测量无源材料样品的声学特性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Li Jianlong;Ma Xiaochen;Li Suxuan;Xiao Fu - 通讯作者:
Xiao Fu
云计算中基于共享机制和群体智能优化算法的任务调度方案 (Task Scheduling Scheme Based on Sharing Mechanism and Swarm Intelligence Optimization Algorithm in Cloud Computing)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiao Fu - 通讯作者:
Xiao Fu
Tensor-Based Parameter Estimation of Double Directional Massive Mimo Channel with Dual-Polarized Antennas
基于张量的双极化天线双向大规模MIMO信道参数估计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Cheng Qian;Xiao Fu;N. Sidiropoulos;Ye Yang - 通讯作者:
Ye Yang
Xiao Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao Fu', 18)}}的其他基金
CIF: Small: Latent Neural Factor Models for Radio Cartography From Bits
CIF:小:来自 Bits 的无线电制图的潜在神经因子模型
- 批准号:
2210004 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Nonlinear Factor Analysis for Sensing and Learning
职业:传感和学习的非线性因子分析
- 批准号:
2144889 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CCSS: Block-term Tensor Tools for Multi-aspect Sensing and Analysis
CCSS:用于多方面传感和分析的块项张量工具
- 批准号:
2024058 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003082 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
III: Small: Labeling Massive Data from Noisy, Incomplete and Crowdsourced Annotations
III:小:标记来自嘈杂、不完整和众包注释的海量数据
- 批准号:
2007836 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231078 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
- 批准号:
2334665 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Multimodal Mapping of Gene Isoforms by Electromicrofluidic Manipulation
合作研究:通过电微流体操作进行基因异构体的多模式图谱
- 批准号:
2303927 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Multimodal Mapping of Gene Isoforms by Electromicrofluidic Manipulation
合作研究:通过电微流体操作进行基因异构体的多模式图谱
- 批准号:
2303926 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327710 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327711 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327709 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
- 批准号:
2334666 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Assessment of Cognitive Decline using Multimodal Neuroimaging with Embedded Artificial Intelligence
合作研究:SCH:使用多模态神经影像和嵌入式人工智能评估认知衰退
- 批准号:
10438005 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别: