CIF: Small: Latent Neural Factor Models for Radio Cartography From Bits
CIF:小:来自 Bits 的无线电制图的潜在神经因子模型
基本信息
- 批准号:2210004
- 负责人:
- 金额:$ 48.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the next generation of intelligent, cognitive and software-defined wireless systems, everything is expected to be connected, literally. Advanced radio frequency (RF) awareness techniques will be the cornerstone of wireless resource management, interference avoidance, transmission optimization, and decision making in a highly crowded, self-organized, and heterogeneous wireless communication environment. To advance RF awareness, spectrum cartography crafts a "radio map" across multiple dimensions (e.g., time, frequency and space) from limited sensors and measurements. Prior approaches often rely on over-simplified RF environment models (e.g., smooth and static radio maps) and problem settings (e.g., using unquantized overhead), which lowers performance when applied in real-world settings. Leveraging recent advances in artificial intelligence, this project aims to develop spectrum cartography theory and methods under complex, heavily shadowed and dynamic environments using limited (i.e., a few bits of) information exchange, which are largely uncharted research waters. In particular, the project seeks to design a class of latent neural factor analysis (LaNFAC) models to represent the RF environments in a parsimonious way. Using the LaNFAC models, the project will offer spectrum cartography approaches to reconstruct realistic RF environments from limited and quantized measurements. Theory and methods developed in this project may find wide application in such disciplines as geoscience, food science, video processing, and medical imaging. The research will bolster undergraduate education and offer training opportunities in optimization, deep learning, tensor analysis, and sensing to students from under-represented and under-served groups with the aim to enhance their career prospects in signal and machine intelligence.This project will develop a suite of analytical and computational tools for provable, robust and efficient spectrum cartography from a small number of measurement bits, by way of developing a variety of LaNFAC tools for radio map modeling. The LNFAC models are a judicious integration of latent factor analysis models (e.g., tensor decomposition) and neural generative models. The work will first develop the basic framework of limited feedback-based and LaNFAC-assisted spectrum cartography in realistic RF environments. Then, the project will consider more challenging scenarios (e.g., no training data) and develop provable spectrum cartography from quantized information feedback/exchange using untrained LaNFAC models. The last research thrust will validate the theory and evaluate the algorithms using carefully designed simulators and software-defined radio experiments using real data. Using untrained neural models retains strong expressiveness without relying on training data, which will facilitate distributed, exchange-limited, and adaptive spectrum cartography. Real-data acquisition and releasing will assist the research community to develop effective and reproducible spectrum cartography approaches, and ultimately advance understanding of the RF awareness problem in a collective way.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在下一代智能、认知和软件定义的无线系统中,一切都将被连接起来。 在高度拥挤、自组织和异构的无线通信环境中,先进的射频(RF)感知技术将成为无线资源管理、干扰避免、传输优化和决策制定的基石。为了提高RF感知,频谱制图制作了跨多个维度的“无线电地图”(例如,时间、频率和空间)。现有方法通常依赖于过度简化的RF环境模型(例如,平滑和静态无线电地图)和问题设置(例如,使用未量化的开销),这在应用于真实世界设置时降低了性能。利用人工智能的最新进展,该项目旨在利用有限的(即,几位的)信息交换,这在很大程度上是未知的研究沃茨。特别是,该项目旨在设计一类潜在神经因子分析(LaNFAC)模型,以简约的方式表示RF环境。利用LaNFAC模型,该项目将提供频谱制图方法,从有限和量化的测量中重建真实的RF环境。本计画所发展之理论与方法可广泛应用于地球科学、食品科学、影像处理、医学影像等领域。该研究将加强本科教育,并为来自代表性不足和服务不足群体的学生提供优化,深度学习,张量分析和传感方面的培训机会,旨在提高他们在信号和机器智能方面的职业前景。该项目将开发一套分析和计算工具,用于从少量测量位,通过开发各种用于无线电地图建模的LaNFAC工具。LNFAC模型是潜在因素分析模型(例如,张量分解)和神经生成模型。这项工作将首先在现实的RF环境中开发基于有限反馈和LaNFAC-assisted频谱制图的基本框架。然后,该项目将考虑更具挑战性的场景(例如,没有训练数据),并使用未经训练的LaNFAC模型从量化信息反馈/交换中开发可证明的光谱制图。最后的研究推力将验证理论和评估算法使用精心设计的模拟器和软件定义的无线电实验使用真实的数据。使用未经训练的神经模型保留了强大的表现力,而不依赖于训练数据,这将促进分布式,交换限制和自适应频谱制图。真实数据的获取和发布将帮助研究界开发有效的和可重复的频谱制图方法,并最终以集体的方式推进对RF意识问题的理解。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Fu其他文献
Fast algorithm based on the Hilbert transform for high-speed absolute distance measurement using a frequency scanning interferometry method
基于希尔伯特变换的快速算法,采用频率扫描干涉法进行高速绝对距离测量
- DOI:
10.1364/ao.447750 - 发表时间:
2022 - 期刊:
- 影响因子:1.9
- 作者:
Xiuming Li;Fajie Duan;Xiao Fu;Ruijia Bao;Jiajia Jiang;Cong Zhang - 通讯作者:
Cong Zhang
Localization algorithm based on minimum condition number for wireless sensor networks
基于最小条件数的无线传感器网络定位算法
- DOI:
10.1007/s11767-013-2115-5 - 发表时间:
2013-01 - 期刊:
- 影响因子:0
- 作者:
Du Xiaoyu;Sun Lijuan;Xiao Fu;Wang Ruchuan - 通讯作者:
Wang Ruchuan
Measurement of acoustic properties for passive-material samples using multichannel inverse filter
使用多通道逆滤波器测量无源材料样品的声学特性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Li Jianlong;Ma Xiaochen;Li Suxuan;Xiao Fu - 通讯作者:
Xiao Fu
云计算中基于共享机制和群体智能优化算法的任务调度方案 (Task Scheduling Scheme Based on Sharing Mechanism and Swarm Intelligence Optimization Algorithm in Cloud Computing)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiao Fu - 通讯作者:
Xiao Fu
Tensor-Based Parameter Estimation of Double Directional Massive Mimo Channel with Dual-Polarized Antennas
基于张量的双极化天线双向大规模MIMO信道参数估计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Cheng Qian;Xiao Fu;N. Sidiropoulos;Ye Yang - 通讯作者:
Ye Yang
Xiao Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao Fu', 18)}}的其他基金
CAREER: Nonlinear Factor Analysis for Sensing and Learning
职业:传感和学习的非线性因子分析
- 批准号:
2144889 - 财政年份:2022
- 资助金额:
$ 48.4万 - 项目类别:
Continuing Grant
CCSS: Block-term Tensor Tools for Multi-aspect Sensing and Analysis
CCSS:用于多方面传感和分析的块项张量工具
- 批准号:
2024058 - 财政年份:2020
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003082 - 财政年份:2020
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
III: Small: Labeling Massive Data from Noisy, Incomplete and Crowdsourced Annotations
III:小:标记来自嘈杂、不完整和众包注释的海量数据
- 批准号:
2007836 - 财政年份:2020
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
Collaborative Research: Multimodal Sensing and Analytics at Scale: Algorithms and Applications
协作研究:大规模多模态传感和分析:算法和应用
- 批准号:
1808159 - 财政年份:2018
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Analysis of wild-type ATTR amyloidosis latent in small fiber neuropathy in the elderly
老年人小纤维神经病潜伏野生型ATTR淀粉样变性分析
- 批准号:
23K14759 - 财政年份:2023
- 资助金额:
$ 48.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Small non-coding RNAs of VZV: role in lytic and latent infection
VZV 小非编码 RNA:在裂解和潜伏感染中的作用
- 批准号:
10310489 - 财政年份:2020
- 资助金额:
$ 48.4万 - 项目类别:
RI: Small: Dynamics of repulsion and reinforcement in point process, latent variable, and trajectory models
RI:小:点过程、潜变量和轨迹模型中排斥和强化的动力学
- 批准号:
1816499 - 财政年份:2018
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
Small Molecule Targeting of Viral Non-Coding RNA EBER1 to Detect and Treat Latent EBV
小分子靶向病毒非编码 RNA EBER1 检测和治疗潜伏 EBV
- 批准号:
9764252 - 财政年份:2018
- 资助金额:
$ 48.4万 - 项目类别:
NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge
NeTS:小型:机器学习遇见无线网络优化:探索潜在知识
- 批准号:
1816908 - 财政年份:2018
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
III: Small: Learning Latent Representations of Heterogeneous Information Networks
III:小:学习异构信息网络的潜在表示
- 批准号:
1717084 - 财政年份:2017
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
RI: Small: Multi-View Latent Class Discovery and Prediction with a Streamlined Analytics Platform
RI:小型:使用简化的分析平台进行多视图潜在类别发现和预测
- 批准号:
1718738 - 财政年份:2017
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
III: Small: A New Approach to Latent Space Learning with Diversity-Inducing Regularization and Applications to Healthcare Data Analytics
III:小型:具有多样性诱导正则化的潜在空间学习新方法及其在医疗保健数据分析中的应用
- 批准号:
1617583 - 财政年份:2016
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
Identification biomarker of small RNA and its physiological and pathological role in immune response to Tuberculosis and latent TB infection
小RNA生物标志物的鉴定及其在结核病和潜伏性结核感染免疫反应中的生理和病理作用
- 批准号:
16K09037 - 财政年份:2016
- 资助金额:
$ 48.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel small molecules to reactivate latent HIV and sensitize to anti-viral therapies
新型小分子可重新激活潜伏的艾滋病毒并使抗病毒疗法敏感
- 批准号:
9535050 - 财政年份:2016
- 资助金额:
$ 48.4万 - 项目类别: