CAREER: A Data-Driven Approach for Verification and Control of Cyber-Physical Systems

职业:用于验证和控制网络物理系统的数据驱动方法

基本信息

  • 批准号:
    2145184
  • 负责人:
  • 金额:
    $ 53.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This CAREER project develops formal verification and controller synthesis schemes for complex cyber-physical systems (CPS) with unknown closed-form models by embracing ideas from control theory, computer science, and operations research. Emerging examples of such systems include autonomous cars, autonomous transportation networks, smart grids, and integrated medical devices. The main novelty of this project lies in bypassing the model identification phase and directly verifying or synthesizing control software for CPS against complex safety requirements using just data collected from their behaviors. This project also quantifies rigorously a confidence guarantee on the verification outcomes or the correctness of synthesized control software, which can be improved based on the amount of data. Given an acceptable confidence, unfortunately, the required number of data grows rapidly with the size of the system. This is known as the sample complexity. To tackle this issue, particularly, for large-scale CPS, the project finally proposes a divide and conquer strategy by breaking the data-driven verification or controller synthesis problems into semi-independent ones, where solving each subproblem requires a much smaller amount of data. The research outcomes of this project will contribute to the long term education plan of the PI by i) developing unified courses on CPS with an “end-to-end view,” starting from the foundations of control and discrete systems theory and moving to hardware/software implementations; ii) bringing hands-on learning to those courses by the platforms and benchmarks developed in this project; and iii) finally, improving undergraduate retention rates by leveraging the outreach programs at the University of Colorado Boulder to recruit first generation and underrepresented engineering students and engage them in the platforms used in this project.This project proposes a scalable data-driven approach for formal verification and synthesis of control software for CPS with unknown models (a.k.a. black-box systems). To do so, given temporal logic requirements (e.g., those expressed as linear temporal logic formulae) for CPS, they will be decomposed into simpler tasks based on the structures of automata representing them. Then, those simpler tasks are tackled by constructing so-called barrier functions using data collected from the systems. Particularly, the conditions over barrier functions for those simpler tasks are first formulated as robust convex programs (RCP) which are technically semi-infinite linear programs. Solving those RCP directly are not tractable due to unknown models. Instead, this project considers a set of data collected from the system and solves scenario convex programs (SCP), which are finite linear programs. Barrier functions resulted by solving SCP are combined to verify the given requirement or to provide a controller enforcing it. The project also quantifies rigorously a confidence (a.k.a. out-of-sample performance guarantee) on the verification outcomes or the correctness of synthesized controllers. To tackle the underlying sample complexity for large-scale CPS, this project proposes an adaptive sampling and a modular data-driven schemes by exploiting the natural structure present in the system. Finally, the proposed algorithms will be implemented into open-source software tools to automate the proposed data-driven techniques and evaluated on Artificial Pancreas systems and a team of scale-model autonomous vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个CAREER项目通过拥抱控制理论,计算机科学和运筹学的思想,为具有未知封闭形式模型的复杂网络物理系统(CPS)开发正式验证和控制器综合方案。此类系统的新兴示例包括自动汽车、自动交通网络、智能电网和集成医疗设备。该项目的主要新奇在于绕过模型识别阶段,直接使用从其行为中收集的数据来验证或合成CPS控制软件以满足复杂的安全要求。该项目还严格量化了对验证结果或合成控制软件正确性的置信度保证,可以根据数据量进行改进。不幸的是,给定可接受的置信度,所需的数据数量随着系统的大小而快速增长。这被称为样本复杂度。为了解决这个问题,特别是对于大规模CPS,该项目最终提出了一种分而治之的策略,将数据驱动的验证或控制器综合问题分解为半独立的问题,其中解决每个子问题需要更少量的数据。该项目的研究成果将通过以下方式为PI的长期教育计划做出贡献:i)从控制和离散系统理论的基础开始,转向硬件/软件实施,以“端到端观点”开发CPS统一课程; ii)通过本项目开发的平台和基准,为这些课程带来实践学习;以及iii)最后,通过利用科罗拉多大学博尔德分校的外展计划来招募第一代和代表性不足的工程专业学生,并让他们参与本项目中使用的平台,从而提高本科生的保留率。本项目提出了一个可扩展的数据-驱动方法的形式验证和合成的控制软件的CPS与未知模型(a.k.a.黑箱系统)。为此,给定时间逻辑要求(例如,表示为线性时序逻辑公式的那些),它们将基于表示它们的自动机的结构被分解为更简单的任务。然后,通过使用从系统收集的数据构建所谓的障碍函数来解决这些更简单的任务。特别地,对于那些简单的任务,障碍函数的条件首先被公式化为鲁棒凸规划(RCP),这在技术上是半无限线性规划。由于模型未知,直接求解这些RCP是不容易的。相反,该项目考虑从系统中收集的一组数据,并解决场景凸规划(SCP),这是有限的线性规划。解决SCP的障碍函数被结合起来验证给定的要求或提供一个控制器来执行它。样本外性能保证)对验证结果或合成控制器的正确性的影响。为了解决大规模CPS的潜在样本复杂性,该项目提出了一个自适应采样和模块化的数据驱动方案,利用系统中存在的自然结构。最后,提出的算法将被实施到开源软件工具中,以自动化提出的数据驱动技术,并在人工胰腺系统和一组比例模型自动驾驶车辆上进行评估。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Scenario Approach for Synthesizing k -Inductive Barrier Certificates
合成 k 感应势垒证书的场景方法
  • DOI:
    10.1109/lcsys.2022.3184661
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Murali, Vishnu;Trivedi, Ashutosh;Zamani, Majid
  • 通讯作者:
    Zamani, Majid
Estimation of Infinitesimal Generators for Unknown Stochastic Hybrid Systems via Sampling: A Formal Approach
通过采样估计未知随机混合系统的无穷小生成器:一种形式方法
  • DOI:
    10.1109/lcsys.2022.3186167
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Nejati, Ameneh;Lavaei, Abolfazl;Soudjani, Sadegh;Zamani, Majid
  • 通讯作者:
    Zamani, Majid
Safety Verification of Stochastic Systems: A Repetitive Scenario Approach
随机系统的安全验证:重复场景方法
  • DOI:
    10.1109/lcsys.2022.3186932
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Salamati, Ali;Zamani, Majid
  • 通讯作者:
    Zamani, Majid
Constructing MDP Abstractions Using Data With Formal Guarantees
使用具有正式保证的数据构建 MDP 抽象
  • DOI:
    10.1109/lcsys.2022.3188535
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Lavaei, Abolfazl;Soudjani, Sadegh;Frazzoli, Emilio;Zamani, Majid
  • 通讯作者:
    Zamani, Majid
Data-Driven Stability Verification of Homogeneous Nonlinear Systems with Unknown Dynamics
未知动力学齐次非线性系统的数据驱动稳定性验证
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Majid Zamani其他文献

Compositional Abstraction-based Synthesis for Cascade Discrete-Time Control Systems
级联离散时间控制系统的基于组合抽象的综合
Compositional Synthesis of Finite Abstractions for Networks of Systems: A Dissipativity Approach
系统网络有限抽象的组合综合:耗散性方法
Reliable CPS Design for Mitigating Semiconductor and Battery Aging in Electric Vehicles
用于缓解电动汽车半导体和电池老化的可靠 CPS 设计
AMYTISS: a parallelized tool on automated controller synthesis for large-scale stochastic systems
AMYTISS:大规模随机系统自动控制器综合的并行工具
A Set-based Approach for Synthesizing Controllers Enforcing ω-Regular Properties over Uncertain Linear Control Systems
一种基于集合的方法,用于在不确定线性控制系统上强制执行 ω-正则特性的综合控制器
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingzhuo Zhong;Majid Zamani;M. Caccamo
  • 通讯作者:
    M. Caccamo

Majid Zamani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Majid Zamani', 18)}}的其他基金

CPS: Medium: Correct-by-Construction Controller Synthesis using Gaussian Process Transfer Learning
CPS:中:使用高斯过程迁移学习的构造校正控制器综合
  • 批准号:
    2039062
  • 财政年份:
    2021
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Standard Grant
Secure-by-Construction Controller Synthesis for Cyber-Physical Systems
信息物理系统的安全构建控制器综合
  • 批准号:
    2015403
  • 财政年份:
    2020
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Standard Grant
An Entropy Approach to Invariance and Reachability of Uncertain Control Systems with Limited Information
有限信息不确定控制系统不变性和可达性的熵方法
  • 批准号:
    2013969
  • 财政年份:
    2020
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Standard Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
  • 批准号:
    2236947
  • 财政年份:
    2023
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
  • 批准号:
    2238359
  • 财政年份:
    2023
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Standard Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
  • 批准号:
    2238415
  • 财政年份:
    2023
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Continuing Grant
CAREER: Machine Learning for Data-Driven Fault-Tolerant Control of Complex Systems
职业:用于复杂系统数据驱动容错控制的机器学习
  • 批准号:
    2426614
  • 财政年份:
    2023
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Standard Grant
CAREER: A Holistic Developer-Centered Approach to Enhance Privacy for Data-Driven Applications
职业:以开发人员为中心的整体方法来增强数据驱动应用程序的隐私
  • 批准号:
    2238047
  • 财政年份:
    2023
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Continuing Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
  • 批准号:
    2316675
  • 财政年份:
    2023
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Standard Grant
CAREER: Building long-term climate resilience in 21st-century regional urban land systems through integrated data-driven research and education
职业:通过综合数据驱动的研究和教育,在 21 世纪区域城市土地系统中建立长期的气候适应能力
  • 批准号:
    2239859
  • 财政年份:
    2023
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Continuing Grant
CAREER: Data-Driven Control of High-Rate Dynamic Systems
职业:高速动态系统的数据驱动控制
  • 批准号:
    2237696
  • 财政年份:
    2023
  • 资助金额:
    $ 53.23万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了