CAREER: Variational Analysis of Elastic Patterns and Mechanical Metamaterials
职业:弹性模式和机械超材料的变分分析
基本信息
- 批准号:2145225
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Non-convex and singularly perturbed optimization methods are ubiquitous in the mathematical modeling of complex mechanical systems, and the questions addressed in this project - on stress focusing in confined membranes, and shape change in mechanical metamaterials - are at the cutting edge of nonlinear mechanics and the calculus of variations. The work is interdisciplinary, and success will come from blending techniques from engineering and physics with pure mathematical analysis. Rigorous optimization questions are considered to identify the most extreme examples, with the aim of deriving a general theory for predicting the motifs of wrinkles and folds in packed elastic sheets, as well as general techniques for the design of load-bearing morphable materials. Outreach activities to high school students are planned, involving university students and researchers in science, technology, engineering, and mathematics. With the goal of training the next generation of effective mathematical researchers working at the intersection of variational analysis and the mechanics of materials, this project supports undergraduate research infrastructure, and provide support and mentoring opportunities for graduate and undergraduate students.The research concentrates on two sets of questions from mechanics: on stress focusing in confined elastic shells and related one-dimensional systems, and on the aggregate properties of many body interacting elastic systems known as mechanical metamaterials. On stress focusing: the aim is to develop a variational model of the wrinkle-fold state, which has recently been observed in confined shells but has yet to receive a systematic mathematical treatment. Based on prior successes with predicting the wrinkling patterns of shallow shells, the investigator seeks an asymptotic characterization of the more general wrinkle-fold state starting from fully nonlinear elasticity. On mechanical metamaterials: motivated by the question of predicting the overall behaviors of kirigami elastic systems in response to applied loads, the investigator aims to characterize the effective deformations and emergent stress-strain laws of these and other related many body elastic systems. The goal is to start from fully nonlinear elasticity and derive the relevant weak limits and stored energy in the limit of infinitely many bodies. Students are involved in the project at all levels, including through a high school outreach event in the Chicago area, as well as in a mathematical computing laboratory for undergraduate research co-directed by the investigator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。非凸和奇摄动优化方法在复杂机械系统的数学建模中无处不在,本项目中解决的问题-关于约束膜中的应力集中和机械超材料中的形状变化-处于非线性力学和变分法的前沿。这项工作是跨学科的,成功将来自工程和物理技术与纯数学分析的融合。严格的优化问题被认为是确定最极端的例子,与推导出一个通用的理论预测图案的褶皱和折叠的包装弹性片材,以及一般技术的承载变形材料的设计的目的。计划开展面向高中生的外联活动,让大学生和科学、技术、工程和数学领域的研究人员参与。为了培养下一代在变分分析和材料力学交叉领域工作的高效数学研究人员,该项目支持本科生研究基础设施,并为研究生和本科生提供支持和指导机会。研究集中在力学的两组问题:应力集中在有限的弹性壳和相关的一维系统,并在许多机构相互作用的弹性系统,称为机械超材料的总属性。关于压力集中:目的是发展一个变分模型的折叠状态,这是最近观察到的限制壳,但尚未收到一个系统的数学处理。基于先前的成功预测的扁壳的折叠模式,调查人员寻求一个渐近表征的更一般的折叠状态从完全非线性弹性。关于机械超材料:受预测kirigami弹性系统响应于所施加载荷的整体行为的问题的激励,研究者旨在表征这些和其它相关的多体弹性系统的有效变形和出现的应力-应变规律。我们的目标是从完全非线性弹性开始,并在无限多个物体的极限中导出相关的弱极限和储能。学生们参与了该项目的各个层面,包括通过在芝加哥地区的高中外展活动,以及在一个数学计算实验室的本科生研究共同指导的调查员。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling planar kirigami metamaterials as generalized elastic continua
- DOI:10.1098/rspa.2022.0665
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yue Zheng;Ian Tobasco;P. Celli;Paul Plucinsky
- 通讯作者:Yue Zheng;Ian Tobasco;P. Celli;Paul Plucinsky
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Tobasco其他文献
Derivation of an effective plate theory for parallelogram origami from bar and hinge elasticity
基于杆和铰链弹性的平行四边形折纸有效板理论的推导
- DOI:
10.1016/j.jmps.2024.105832 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:6.000
- 作者:
Hu Xu;Ian Tobasco;Paul Plucinsky - 通讯作者:
Paul Plucinsky
Sharpness and non-sharpness of occupation measure bounds for integral variational problems
积分变分问题的占据测度界的锐度和非锐度
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Giovanni Fantuzzi;Ian Tobasco - 通讯作者:
Ian Tobasco
Bounds on the complexity of Replica Symmetry Breaking for spherical spin glasses
球形自旋玻璃复制对称破缺复杂性的界限
- DOI:
10.1090/proc/13875 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Aukosh Jagannath;Ian Tobasco - 通讯作者:
Ian Tobasco
Navier-Stokes solver using Green's functions I: Channel flow and plane Couette flow
使用格林函数的纳维-斯托克斯求解器 I:通道流和平面库埃特流
- DOI:
10.1016/j.jcp.2013.06.004 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
D. Viswanath;Ian Tobasco - 通讯作者:
Ian Tobasco
Optimal bounds and extremal trajectories for time averages in dynamical systems
动力系统中时间平均值的最优边界和极值轨迹
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ian Tobasco;D. Goluskin;C. Doering - 通讯作者:
C. Doering
Ian Tobasco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Tobasco', 18)}}的其他基金
CAREER: Variational Analysis of Elastic Patterns and Mechanical Metamaterials
职业:弹性模式和机械超材料的变分分析
- 批准号:
2350161 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Scaling Laws and Optimal Design in Some Problems of Continuum Mechanics
连续介质力学若干问题的标度律与优化设计
- 批准号:
2025000 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Scaling Laws and Optimal Design in Some Problems of Continuum Mechanics
连续介质力学若干问题的标度律与优化设计
- 批准号:
1812831 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似海外基金
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Variational Analysis of Elastic Patterns and Mechanical Metamaterials
职业:弹性模式和机械超材料的变分分析
- 批准号:
2350161 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Hippocampal shape analysis using graph convolutional variational autoencoders
使用图卷积变分自动编码器进行海马形状分析
- 批准号:
572580-2022 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
University Undergraduate Student Research Awards
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
- 批准号:
RGPIN-2017-04035 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Variational Analysis: Theory, Algorithms, and Applications
变分分析:理论、算法和应用
- 批准号:
2204519 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Variational structures, convergence to equilibrium and multiscale analysis for non-Markovian systems
非马尔可夫系统的变分结构、均衡收敛和多尺度分析
- 批准号:
EP/V038516/1 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Research Grant
New development of numerical analysis based on the space-time variational method
基于时空变分法的数值分析新进展
- 批准号:
21H04431 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
- 批准号:
21K18583 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Geometry, Analysis, and Variational Methods
几何、分析和变分方法
- 批准号:
2105557 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
- 批准号:
RGPIN-2017-04035 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual