Variational structures, convergence to equilibrium and multiscale analysis for non-Markovian systems
非马尔可夫系统的变分结构、均衡收敛和多尺度分析
基本信息
- 批准号:EP/V038516/1
- 负责人:
- 金额:$ 35.98万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A partial differential equation (PDE) is an equation that involves an unknown function of multiple (spatial and temporal) variables and its partial derivatives. PDEs appear in many branches of Mathematics and constitute a powerful mathematical framework for the modelling, analysis and computation/simulation of complex systems. A striking example is the Fokker-Planck equation which has been used intensively in statistical mechanics to describe the time evolution of the probability density function of the position of a particle moving under the influence of an external force, a friction and random forces. By solving a PDE and studying the qualitative and quantitative properties of its solutions, one gains important insights into the understanding and control of the underlying complex system/phenomenon. The second law of thermodynamics, which was discovered almost 200 years ago, states that the entropy of an isolated system can never decrease over time. It has been of fundamental interest to build mathematical theories that preserve physical structures, in particular to incorporate the second law of thermodynamics to mathematical models and analysis. In 1998, Jordan, Kinderlehrer and Otto made a major breakthrough in mathematical analysis with the introduction of a theory of Wasserstein gradient flows, particularly proving that the diffusion equation is a gradient flow (steepest descent) of the (negative) Boltzmann entropy with respect to the Wasserstein metric, which was a seemingly unrelated concept coming from the theory of optimal transport. This work not only rigorously shows that entropy is the driving force of a diffusion process but also reveals explicitly the Wasserstein metric as a dissipation mechanism. Since then the theory of Wasserstein gradient flows has provided a unified framework and tools for analysing many Markovian (memoryless) systems. During the last twenty years, many evolutionary PDEs for models in biology, chemistry, mechanics, and physics have been studied via this framework, including the Fokker-Planck equation, porous medium equations, thin-film equations, nonlinear aggregation-diffusion equations, interface evolutions, as well as pattern formation and evolution. However, many real-life systems such as anomalous diffusion, plasma transport, chemotaxis movements and human travel, just to name a few, involve long-range interactions and have memory (history), thus are non-Markovian. The mathematical analysis of non-Markovian processes is often much more difficult than that of Markovian ones because describing a non-Markovian process requires an infinite set of multidimensional probability distributions and one cannot obtain the higher-dimensional distributions from lower dimensional ones as in the Markovian case. A generalisation of the theory of Wasserstein gradient flows to non-Markovian systems is challenging but desirable.This proposal aims at developing variational theory and methods for studying a large class of nonlocal nonlinear partial differential equations describing non-Markovian systems. Important examples considered in the proposal include the fractional Fokker-Planck equation, the fractional porous medium equation and the space-time fractional diffusion equation. Firstly, we will introduce discrete approximation schemes that take into account the memory effects, constructively showing the existence and uniqueness of solutions to the PDEs. Secondly, we will generalise the celebrated hypocoercivity method introduced by C. Villani (Fields Medal in 2010) to obtain rate of convergence to the equilibrium of the PDEs. Thirdly, we will derive and exploit connections between variational structures and stochastic processes to characterise multi-scale behaviour of these systems, both deriving effective systems and obtaining a quantification of errors. The outcome of the proposal will significantly deepen our understanding of the complex systems modelled by the PDEs.
偏微分方程(PDE)是一个涉及多个(空间和时间)变量及其偏导数的未知函数的方程。偏微分方程出现在数学的许多分支中,构成了复杂系统建模、分析和计算/仿真的强大数学框架。一个突出的例子是福克-普朗克方程,它在统计力学中被广泛用于描述在外力、摩擦力和随机力的影响下运动的粒子的位置的概率密度函数的时间演化。通过求解偏微分方程并研究其解的定性和定量性质,人们可以获得对底层复杂系统/现象的理解和控制的重要见解。大约200年前发现的热力学第二定律指出,一个孤立系统的熵永远不会随着时间的推移而减少。建立保持物理结构的数学理论,特别是将热力学第二定律纳入数学模型和分析,一直是人们的根本兴趣。1998年,Jordan、Kinderlehrer和Otto在数学分析上取得了重大突破,引入了Wasserstein梯度流理论,特别证明了扩散方程是(负)玻尔兹曼熵相对于Wasserstein度规的梯度流(最陡下降),这是一个来自最优传输理论的看似无关的概念。这项工作不仅严格表明,熵是一个扩散过程的驱动力,但也明确揭示了Wasserstein度规作为一种耗散机制。从那时起,Wasserstein梯度流理论为分析许多马尔可夫(无记忆)系统提供了一个统一的框架和工具。在过去的二十年里,人们通过这个框架研究了生物学、化学、力学和物理学中许多模型的进化偏微分方程,包括福克-普朗克方程、多孔介质方程、薄膜方程、非线性聚集扩散方程、界面演化以及图案形成和演化。然而,许多现实生活中的系统,如异常扩散,等离子体传输,趋化运动和人类旅行,仅举几例,涉及长程相互作用和记忆(历史),因此是非马尔可夫的。非马尔可夫过程的数学分析通常比马尔可夫过程的数学分析困难得多,因为描述非马尔可夫过程需要无穷多的多维概率分布,并且不能像马尔可夫过程那样从低维分布中获得高维分布。将Wasserstein梯度流理论推广到非马尔可夫系统是一个具有挑战性的问题,但也是一个令人期待的问题,该问题的目的是发展变分理论和方法来研究一类描述非马尔可夫系统的非局部非线性偏微分方程。该建议中考虑的重要例子包括分数阶Fokker-Planck方程,分数阶多孔介质方程和时空分数阶扩散方程。首先,我们将介绍离散近似计划,考虑到记忆效应,建设性地显示的存在性和唯一性的解决方案的偏微分方程。其次,我们将推广C. Villani(2010年菲尔兹奖),以获得收敛到偏微分方程均衡的速度。第三,我们将推导和利用变分结构和随机过程之间的联系来研究这些系统的多尺度行为,既推导有效系统,又获得误差的量化。该提案的结果将大大加深我们对偏微分方程建模的复杂系统的理解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Operator-splitting schemes for degenerate, non-local, conservative-dissipative systems
简并、非局域、保守耗散系统的算子分割方案
- DOI:10.3934/dcds.2022109
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Adams D
- 通讯作者:Adams D
Model reduction of Brownian oscillators: quantification of errors and long-time behavior
- DOI:10.1088/1751-8121/ace948
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:M. Colangeli;M. H. Duong;A. Muntean
- 通讯作者:M. Colangeli;M. H. Duong;A. Muntean
Reducing exit-times of diffusions with repulsive interactions
通过排斥相互作用减少扩散的退出时间
- DOI:10.1051/ps/2023012
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chaudru De Raynal P
- 通讯作者:Chaudru De Raynal P
A reduction scheme for coupled Brownian harmonic oscillators
耦合布朗谐振子的简化方案
- DOI:10.1088/1751-8121/acab41
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Colangeli M
- 通讯作者:Colangeli M
Entropic Regularization of NonGradient Systems
非梯度系统的熵正则化
- DOI:10.1137/21m1414668
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Adams D
- 通讯作者:Adams D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Duong其他文献
Hong Duong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Duong', 18)}}的其他基金
Rigorous coarse-graining of defects at positive temperature
正温度下缺陷的严格粗晶化
- 批准号:
EP/W008041/1 - 财政年份:2022
- 资助金额:
$ 35.98万 - 项目类别:
Research Grant
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 35.98万 - 项目类别:
Studentship
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
- 批准号:
DP240101708 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Research Grant
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Continuing Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
- 批准号:
24K07680 - 财政年份:2024
- 资助金额:
$ 35.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)