Integrating Robots into the Future of Work

将机器人融入未来的工作

基本信息

  • 批准号:
    2152163
  • 负责人:
  • 金额:
    $ 300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Recent technical advances have enabled a new family of robotic technologies, termed collaborative robots, or “cobots.” Unlike traditional “caged” industrial robots that are limited to isolated factory environments, cobots make it safe and practical for robots to work in the same environments in which people work and live. These technologies have the potential to fundamentally transform how physical work is performed in industries from manufacturing to services and in occupations ranging from manual labor to highly trained professions. Rather than automating away human labor, cobots have the potential to enhance productivity, safety, and ergonomic conditions for human workers. Realizing this potential will require not only advancing technology to create sufficiently capable robots but also addressing human-centered questions ranging from how individuals interact with robots to how the introduction of robots affects personal life, the workplace, job satisfaction, communities and societies. Despite these broad-ranging and interdisciplinary research challenges, robotic technology is primarily driven by scientists with deep technical backgrounds but little experience with human-centered and societal issues. On the other hand, social scientists studying how robots might affect human work may lack an understanding of the capabilities of robotic technology as well as the possibilities enabled by them. Addressing these challenges will require a new generation of “STEM+” researchers capable of marrying technical and social-scientific knowledge and skills to carry out rigorous, groundbreaking fundamental research at the boundary of people and technology. The INTEGRATE training program provides a unique academic environment to train graduate students in STEM disciplines, including computer science, engineering, psychology, and economics, to become technologists and social scientists equipped to address the significant technical and human-centric challenges at the individual, organizational, and societal scales. The program achieves this goal through key innovations in STEM curricula, experiential research training, professional development opportunities, community development, and program evaluation. Trainees who complete the program will help form a new generation of interdisciplinary researchers who will work across disciplinary boundaries to shape robotic technologies and the future of work in a way that maximizes individual and societal benefit. In addition to advancing and enriching STEM training, the program makes significant societal contributions through new technologies that will improve the lives of workers; new knowledge and guidelines that will improve organizations and industries; and new recommendations that inform labor practices, technology policy, and the legal system.The INTEGRATE program provides a unique academic environment to enrich the training of graduate students in STEM disciplines, including computer science, engineering, psychology, and economics, to address fundamental research challenges in realizing the integration of robots into the future of work. The program achieves these goals through five key components and innovations. The first is a flexible, personalized curriculum that combines core STEM training with coursework from complementary human-centered disciplines in the form of a set of concentration areas. The second component consists of hands-on, immersive, and mentored research experiences through apprenticeship-based industry-sponsored team research projects on real-world problems, called “Expeditions.” The third element is comprised of opportunities for professional development through internships and secondments at a network of partner industrial and academic organizations. Fourth is the forming of an INTEGRATE Research Community through weekly colloquia, an annual “INTEGRATE Week” event, and significant online presence and activity. Fifth and finally is continuous and rigorous assessment of program effectiveness in training, research productivity, and real-world relevance and impact toward program refinement. This highly interdisciplinary program brings together faculty from computer sciences; mechanical and industrial & systems engineering; psychology; educational psychology; business; law; and public affairs/economics. Throughout the program, trainees participate in research that investigates research challenges at the micro, systems, and macro scales. At the micro level, research includes the design of novel interfaces and algorithms to enable effective teaming between people and robots; studies of how humans build working relationships with robots; investigations of the impact of working with robots on human health, safety, life and job satisfaction, and wellbeing; and development of training programs for people to effectively work with robots. At the systems level, trainees study the integration of robotic assistants into home life, the workplace, and industrial processes; how they must be redesigned to best utilize cobots; how robots change organizations; and the changes in organizational behavior and adoption around robots. At the macro scale, trainee research teams will investigate how the introduction of robots affects human labor across demographic groups and communities and develops public policy changes that might be necessary to maximize the societal utility of robotic technologies. In the program, trainees build research skills that integrate multiple disciplinary perspectives, knowledge, and skills as well as core professional skills in communication, teamwork, and ethical decision making.The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的技术进步使一个新的机器人技术家族,称为协作机器人或“玉米饼”。与传统的“笼”工业机器人限于孤立的工厂环境不同,配角使机器人可以在人们工作和生活的相同环境中工作。这些技术有可能从根本上改变从制造业到服务的行业中进行体育工作,从而占用从体力劳动到训练有素的专业人员。配角没有自动化人工劳动,而是有潜力提高人类工人的生产力,安全性和人体工程学条件。意识到这种潜力将不仅需要提高技术来创建足够能力的机器人,而且还需要解决以人为中心的问题的问题,从个人与机器人互动到机器人的引入如何影响个人生活,工作场所,工作满意度,尽管这些广泛的跨学科研究挑战,机器人技术主要由科学家与深度的技术背景和经验丰富的人类经验和社交问题和社交问题相关。另一方面,研究机器人如何影响人类工作的社会科学家可能缺乏对机器人技术的能力以及他们实现的可能性的理解。应对这些挑战将需要新一代的“ STEM+”研究人员,能够结合技术和社会科学知识和技能,以在人员和技术的边界上进行严格的,开创性的基础研究。综合培训计划提供了一个独特的学术环境,可以培训包括计算机科学,工程,心理学和经济学在内的STEM学科的研究生,以成为技术和社会科学家,等同于应对个人,组织和社会规模的重大技术和以人为中心的挑战。该计划通过STEM课程,专家研究培训,专业发展机会,社区发展和计划评估的关键创新来实现这一目标。完成该计划的学员将有助于组建新一代的跨学科研究人员,他们将跨学科界限工作,以塑造机器人技术和工作的未来,以最大化和丰富STEM培训的方式最大化,该计划通过新的社会贡献来通过新技术来改善工人的生活;新知识和准则将改善组织和行业;综合计划为实验室实践,技术政策和法律制度提供了信息,提供了一个独特的学术环境,以丰富研究生在STEM学科中的培训,包括计算机科学,工程,心理学和经济学,以应对实现将机器人整合到未来工作中的基本研究挑战。该计划通过五个关键组成部分和创新实现了这些目标。第一个是一种灵活的个性化货币,将核心STEM培训与以人为中心的学科为单位的课程结合在一起,以一组集中区域的形式结合在一起。第二部分包括通过基于学徒制的行业赞助的有关现实世界问题的团队研究项目(称为“探险”)的实践,身临其境和指导的研究经验。第三个要素包括通过在合作伙伴工业和学术组织网络上进行的实施和秒数进行专业发展的机会。第四是通过每周的校友,每年的“综合”周活动以及在线的重要存在和活动来形成整合研究社区。第五和最终是对计划有效性,研究生产力以及现实世界中的相关性以及对计划改进的影响的持续,严格评估,对精神和工业的教学;机械和工业型;事务/经济学。并制定培训计划,以使人们有效地使用机器人。在系统层面,受训人员研究了机器人助手在家庭生活,工作场所和工业过程中的整合;必须如何重新设计它们以最好地利用柯伯特;机器人如何改变组织;以及机器人周围的组织行为和采用的变化。在宏观范围内,受训人员研究团队将研究机器人的引入如何影响人口群体和社区的人工劳动,并开发公共政策变化,这些变化是最大程度地提高机器人技术的社会效用所必需的。在该计划中,学员建立了研究技能,以整合多个学科观点,知道和技能,以及沟通,团队合作和道德决策方面的核心专业技能。 NSF研究训练(NRT)计划旨在鼓励开发和实施用于STEM研究生教育培训的大胆,新的潜在变革模型。该计划致力于通过全面的跨学科或收敛性研究领域的STEM研究生进行有效培训,通过全面的培训模型,这些模型具有创新,基于循证的,并且与不断变化的劳动力和研究需求保持一致。该奖项反映了NSF的法定使命,并通过使用基金会的知识优点和广泛的影响来评估NSF的法定任务,并被认为是宝贵的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Making Informed Decisions: Supporting Cobot Integration Considering Business and Worker Preferences
Handheld Haptic Device with Coupled Bidirectional Input
具有耦合双向输入的手持式触觉设备
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doshi, M. V.;Hagenow, M.;Radwin, R.;Gleicher, M.;Mutlu, B.;Zinn, M.
  • 通讯作者:
    Zinn, M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bilge Mutlu其他文献

The Social Impact of a Robot Co-Worker in Industrial Settings
工业环境中机器人同事的社会影响
Practices and Barriers of Cooking Training for Blind and Low Vision People
盲人和低视力者烹饪培训的实践和障碍
Manually Acquiring Targets From Multiple Viewpoints Using Video Feedback
使用视频反馈从多个视角手动获取目标
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bailey Ramesh;Anna Konstant;Pragathi Pravenna;Emmanuel Senft;Michael Gleicher;Bilge Mutlu;M. Zinn;R. Radwin
  • 通讯作者:
    R. Radwin
Proceedings of the Third international conference on Social Robotics
第三届社会机器人国际会议论文集
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bilge Mutlu;C. Bartneck;Jaap Ham;V. Evers
  • 通讯作者:
    V. Evers
Characterizing Barriers and Technology Needs in the Kitchen for Blind and Low Vision People
描述盲人和低视力人士厨房中的障碍和技术需求
  • DOI:
    10.48550/arxiv.2310.05396
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ru Wang;Nihan Zhou;Tam Nguyen;Sanbrita Mondal;Bilge Mutlu;Yuhang Zhao
  • 通讯作者:
    Yuhang Zhao

Bilge Mutlu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bilge Mutlu', 18)}}的其他基金

Collaborative Research: HCC: Medium: Designing Social Companion Robots for Long-term Interaction
合作研究:HCC:媒介:设计用于长期交互的社交伴侣机器人
  • 批准号:
    2312354
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: PATHWiSE - Supporting Teacher Authoring of Robot-Assisted Homework
合作研究:HCC:小型:PATHWiSE - 支持教师编写机器人辅助作业
  • 批准号:
    2202803
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Designing and Testing Companion Robots to Support Informal, In-home STEM Learning
设计和测试伴侣机器人以支持非正式的家庭 STEM 学习
  • 批准号:
    1906854
  • 财政年份:
    2019
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Program Verification and Synthesis for Collaborative Robots
NRI:INT:COLLAB:协作机器人的程序验证和综合
  • 批准号:
    1925043
  • 财政年份:
    2019
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
ROBO-VI: A Virtual-Internship-Based Hybrid Learning Technology to Prepare Traditional and Non-Traditional Students to Work with Collaborative Robots
ROBO-VI:一种基于虚拟实习的混合学习技术,帮助传统和非传统学生做好使用协作机器人的准备
  • 批准号:
    1822872
  • 财政年份:
    2018
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
EAGER: Representations and Methods for Verifiable Human-Robot Interactions
EAGER:可验证的人机交互的表示和方法
  • 批准号:
    1651129
  • 财政年份:
    2016
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Models and Instruments for Integrating Effective Human-Robot Teams into Manufacturing
NRI/协作研究:将有效的人机团队集成到制造中的模型和工具
  • 批准号:
    1426824
  • 财政年份:
    2014
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
CAREER: Designing Socially Adept Robots
职业:设计社交机器人
  • 批准号:
    1149970
  • 财政年份:
    2012
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
HCC: Small: Embodied Mediated Communication in Collaborative Work
HCC:小型:协作工作中的体现中介沟通
  • 批准号:
    1117652
  • 财政年份:
    2011
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
HCC: Small: Designing Effective Gaze Mechanisms for Cross-Modal Embodied Agents
HCC:小:为跨模式实体代理设计有效的注视机制
  • 批准号:
    1017952
  • 财政年份:
    2010
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
  • 批准号:
    52305036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抛光机器人柔性变刚度并联执行器宏微协调运动规划与主被动柔顺控制
  • 批准号:
    52305016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
杂乱堆叠场景下的机器人视觉伺服自适应抓取研究
  • 批准号:
    52365065
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向水下崎岖地形辅助探测的仿生蛇机器人流固耦合与自适应控制研究
  • 批准号:
    62303117
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EMERGENCE: Tackling Frailty - Facilitating the Emergence of Healthcare Robots from Labs into Service
出现:解决脆弱性——促进医疗机器人从实验室进入服务领域
  • 批准号:
    EP/W000741/1
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Research Grant
An Outside-the-Box Approach that Integrates Robots into a Company’s Existing Warehouse Infrastructure, Enabling Them to Automate Their Processes at an Approachable Price Point
一种开箱即用的方法,将机器人集成到公司现有的仓库基础设施中,使他们能够以可承受的价格实现流程自动化
  • 批准号:
    93426
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Collaborative R&D
Research into resilient under-actuated robots
弹性欠驱动机器人的研究
  • 批准号:
    RGPIN-2016-06007
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
Research into Deep Learning for the Control of Concentric Tube Robots and other Continuum Based Robots
同心管机器人和其他连续体机器人控制的深度学习研究
  • 批准号:
    2338607
  • 财政年份:
    2020
  • 资助金额:
    $ 300万
  • 项目类别:
    Studentship
Research into resilient under-actuated robots
弹性欠驱动机器人的研究
  • 批准号:
    RGPIN-2016-06007
  • 财政年份:
    2020
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了