SHF: Small: Practical Analyses and Safe Transformations for Imperative Deep Learning Programs
SHF:小型:命令式深度学习程序的实用分析和安全转换
基本信息
- 批准号:2200343
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Learning often occurs by pattern recognition. Software systems learn by using algorithms to recognize patterns and draw inferences from existing data and apply the inferences to previously unseen data. Deep Learning (DL) is a kind of machine-learning algorithm inspired by neural networks of human brains. A DL model learns decision logic from a large set of examples. A classic application is image processing, where a model may learn to recognize particular images through training with many sample images. While software systems that incorporate DL models involve large amounts of data, they still have to be efficient and responsive. This project is expected to increase DL system robustness, reliability, and scalability, positively impacting computer vision, autonomous driving, medicine, and extremism identification. Tools developed as a result of this project are also expected to democratize the Artificial Intelligence workforce, as they will assist data scientists and software engineers of varying proficiencies in writing quality DL code. Such tools can potentially contribute to a diverse, globally competitive STEM workforce and increase US economic competitiveness. This project will also promote software engineering concepts in machine learning by augmenting and creating several undergraduate and graduate courses. Dissemination will occur through publicly distributing datasets, papers, open-source software, and Open Educational Resources.DL frameworks increasingly make various tradeoffs to balance the often competing requirements of reliability, usability, and generality. Popular DL frameworks have historically embraced graph-based, deferred execution-style (low-level) Application Programming Interfaces (APIs). While efficient, (legacy) systems using such interfaces are cumbersome, error-prone, and difficult to debug, maintain, and port. Contrarily, (modern) eager execution-style DL APIs facilitate higher-level, imperative, and Object-Oriented (Python) programs that are easier to debug, less error-prone, and more extensible have consequently emerged at the expense of run-time performance. Though hybrid approaches aim to bridge the two paradigms, they necessitate a non-trivial amount of technical metadata and exhibit several limitations and known issues on the use of native program constructs. This project is expected to contribute practical analyses and safe transformations for modern imperative and Object-Oriented DL programs that markedly improve their reliability and scalability. First, various software engineering artifacts will be mined for bug fixes, (manual) refactorings (semantics-preserving source-to-source program transformations), and missed opportunities in efficiently executing imperative DL code. Then, novel analyses and refactorings for automatically (i) migrating legacy, deferred execution-style DL code to more robust imperative DL code and (ii) specifying how their otherwise eagerly-executed imperative DL code should be reliably and efficiently executed as graphs at run-time will be formulated. Finally, novel analyses for detecting performance bottlenecks and semantic errors associated with graph-based execution of imperative, otherwise eagerly-executed DL code will be designed. This contribution is significant because it fills the void of techniques, methodologies, and tools for effectively developing---and evolving long-lived---trustworthy and efficient DL systems that pervasively use imperative and Object-Oriented DL programming.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学习通常是通过模式识别进行的。软件系统通过使用算法来识别模式,并从现有数据中得出推论,并将推论应用于以前未见过的数据。深度学习(Deep Learning, DL)是一种受人类大脑神经网络启发的机器学习算法。DL模型从大量的例子中学习决策逻辑。一个经典的应用是图像处理,其中模型可以通过使用许多样本图像训练来学习识别特定的图像。虽然包含深度学习模型的软件系统涉及大量数据,但它们仍然需要高效和响应。该项目有望提高深度学习系统的鲁棒性、可靠性和可扩展性,对计算机视觉、自动驾驶、医学和极端主义识别产生积极影响。该项目开发的工具也有望使人工智能劳动力民主化,因为它们将帮助不同熟练程度的数据科学家和软件工程师编写高质量的深度学习代码。这些工具可能有助于培养多样化的、具有全球竞争力的STEM劳动力,并提高美国的经济竞争力。该项目还将通过增加和创建几个本科和研究生课程来促进机器学习中的软件工程概念。传播将通过公开分发数据集、论文、开源软件和开放教育资源来实现。DL框架越来越多地进行各种权衡,以平衡可靠性、可用性和通用性等经常相互竞争的需求。流行的深度学习框架历来都采用基于图的、延迟执行风格(低级)的应用程序编程接口(api)。使用这种接口的(遗留)系统虽然效率很高,但很麻烦、容易出错,而且难以调试、维护和移植。相反,(现代)渴望执行风格的DL api促进了更高级的、命令式的和面向对象的(Python)程序,这些程序更容易调试,更不容易出错,并且更易于扩展,因此以牺牲运行时性能为代价出现了。尽管混合方法旨在弥合这两种范式,但它们需要大量的技术元数据,并且在使用本机程序结构时显示出一些限制和已知问题。该项目有望为现代命令式和面向对象的深度学习程序提供实用的分析和安全的转换,从而显著提高它们的可靠性和可扩展性。首先,将挖掘各种软件工程工件,以修复错误,(手动)重构(保持语义的源到源程序转换),以及在有效执行命令式DL代码中错过的机会。然后,新的分析和重构将自动(i)将遗留的、延迟执行风格的深度学习代码迁移到更健壮的命令式深度学习代码,以及(ii)指定如何在运行时以图形的形式可靠、有效地执行他们原本急于执行的命令式深度学习代码。最后,将设计用于检测性能瓶颈和语义错误的新分析,这些性能瓶颈和语义错误与命令式的基于图形的执行相关,否则将急切地执行DL代码。这一贡献是重要的,因为它填补了技术、方法和工具的空白,这些技术、方法和工具可以有效地开发和发展长期存在的、可信的和高效的深度学习系统,这些系统普遍使用命令式和面向对象的深度学习编程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study
- DOI:10.1145/3524842.3528455
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Tatiana Castro V'elez;Raffi Khatchadourian;M. Bagherzadeh;A. Raja
- 通讯作者:Tatiana Castro V'elez;Raffi Khatchadourian;M. Bagherzadeh;A. Raja
How many mutex bugs can a simple analysis find in Go programs?
简单分析一下Go程序中可以发现多少互斥量bug?
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fumi Takeuchi. Hidehiko Masuhara. Raffi Khatchadourian, Youyou Cong
- 通讯作者:Fumi Takeuchi. Hidehiko Masuhara. Raffi Khatchadourian, Youyou Cong
A Tool for Rejuvenating Feature Logging Levels via Git Histories and Degree of Interest
通过 Git 历史记录和兴趣程度恢复功能日志级别的工具
- DOI:10.1109/icse-companion55297.2022.9793736
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tang, Yiming;Spektor, Allan;Khatchadourian, Raffi;Bagherzadeh, Mehdi
- 通讯作者:Bagherzadeh, Mehdi
QuerTCI: A Tool Integrating GitHub Issue Querying with Comment Classification
QuerTCI:GitHub问题查询与评论分类相结合的工具
- DOI:10.5281/zenodo.6115404
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Paing, Ye;Castro, Tatiana Vélez;Khatchadourian, Raffi
- 通讯作者:Khatchadourian, Raffi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raffi Khatchadourian其他文献
Automated refactoring of legacy Java software to enumerated types
- DOI:
10.1007/s10515-016-0208-8 - 发表时间:
2007-10 - 期刊:
- 影响因子:3.4
- 作者:
Raffi Khatchadourian - 通讯作者:
Raffi Khatchadourian
Approach for Change Impact Analysis of Aspectual Requirements
方面需求变更影响分析方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
R. Chitchyan;A. Rashid;Raffi Khatchadourian - 通讯作者:
Raffi Khatchadourian
Object Databases : an Analytical Approach
对象数据库:一种分析方法
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Raffi Khatchadourian - 通讯作者:
Raffi Khatchadourian
Rely-guarantee approach to reasoning about aspect-oriented programs
面向方面程序的推理的依赖保证方法
- DOI:
10.1145/1233843.1233848 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Raffi Khatchadourian;N. Soundarajan - 通讯作者:
N. Soundarajan
Contributing Factors to Pointcut Fragility
造成切入点脆弱性的因素
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
P. Greenwood;A. Rashid;Raffi Khatchadourian - 通讯作者:
Raffi Khatchadourian
Raffi Khatchadourian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raffi Khatchadourian', 18)}}的其他基金
EAPSI: Automated Refactoring of Legacy Java Frameworks to Annotation Types
EAPSI:将遗留 Java 框架自动重构为注释类型
- 批准号:
1015773 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Fellowship Award
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312871 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Practical Private Information Retrieval
SaTC:核心:小型:实用的私人信息检索
- 批准号:
2246386 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312873 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204656 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CNS Core: Small: Practical Memory Access Pattern Obfuscation with Algorithm, Application and Architecture Co-designs
CNS 核心:小型:通过算法、应用程序和架构协同设计进行实用内存访问模式混淆
- 批准号:
2152497 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204657 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant