SHF: Small: Practical Analyses and Safe Transformations for Imperative Deep Learning Programs

SHF:小型:命令式深度学习程序的实用分析和安全转换

基本信息

  • 批准号:
    2200343
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Learning often occurs by pattern recognition. Software systems learn by using algorithms to recognize patterns and draw inferences from existing data and apply the inferences to previously unseen data. Deep Learning (DL) is a kind of machine-learning algorithm inspired by neural networks of human brains. A DL model learns decision logic from a large set of examples. A classic application is image processing, where a model may learn to recognize particular images through training with many sample images. While software systems that incorporate DL models involve large amounts of data, they still have to be efficient and responsive. This project is expected to increase DL system robustness, reliability, and scalability, positively impacting computer vision, autonomous driving, medicine, and extremism identification. Tools developed as a result of this project are also expected to democratize the Artificial Intelligence workforce, as they will assist data scientists and software engineers of varying proficiencies in writing quality DL code. Such tools can potentially contribute to a diverse, globally competitive STEM workforce and increase US economic competitiveness. This project will also promote software engineering concepts in machine learning by augmenting and creating several undergraduate and graduate courses. Dissemination will occur through publicly distributing datasets, papers, open-source software, and Open Educational Resources.DL frameworks increasingly make various tradeoffs to balance the often competing requirements of reliability, usability, and generality. Popular DL frameworks have historically embraced graph-based, deferred execution-style (low-level) Application Programming Interfaces (APIs). While efficient, (legacy) systems using such interfaces are cumbersome, error-prone, and difficult to debug, maintain, and port. Contrarily, (modern) eager execution-style DL APIs facilitate higher-level, imperative, and Object-Oriented (Python) programs that are easier to debug, less error-prone, and more extensible have consequently emerged at the expense of run-time performance. Though hybrid approaches aim to bridge the two paradigms, they necessitate a non-trivial amount of technical metadata and exhibit several limitations and known issues on the use of native program constructs. This project is expected to contribute practical analyses and safe transformations for modern imperative and Object-Oriented DL programs that markedly improve their reliability and scalability. First, various software engineering artifacts will be mined for bug fixes, (manual) refactorings (semantics-preserving source-to-source program transformations), and missed opportunities in efficiently executing imperative DL code. Then, novel analyses and refactorings for automatically (i) migrating legacy, deferred execution-style DL code to more robust imperative DL code and (ii) specifying how their otherwise eagerly-executed imperative DL code should be reliably and efficiently executed as graphs at run-time will be formulated. Finally, novel analyses for detecting performance bottlenecks and semantic errors associated with graph-based execution of imperative, otherwise eagerly-executed DL code will be designed. This contribution is significant because it fills the void of techniques, methodologies, and tools for effectively developing---and evolving long-lived---trustworthy and efficient DL systems that pervasively use imperative and Object-Oriented DL programming.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学习通常是通过模式识别发生的。软件系统通过使用算法来识别模式并从现有数据中得出推断,并将推论应用于以前看不见的数据,从而学习。深度学习(DL)是一种灵感来自人类大脑神经网络的机器学习算法。 DL模型从大量示例中学习决策逻辑。经典应用是图像处理,模型可以通过使用许多示例图像训练来学会识别特定图像。尽管将DL模型纳入大量数据的软件系统仍然必须有效且响应迅速。预计该项目将增加DL系统的鲁棒性,可靠性和可伸缩性,从而积极影响计算机视觉,自动驾驶,医学和极端主义识别。由于该项目而开发的工具也有望使人工智能劳动力民主化,因为它们将帮助数据科学家和软件工程师编写高质量的DL代码。这样的工具可能会导致各种各样的全球竞争性STEM劳动力并提高美国的经济竞争力。该项目还将通过增强和创建几个本科和研究生课程来促进机器学习中的软件工程概念。传播将通过公开分发数据集,论文,开源软件和开放教育资源。DL框架越来越多地进行各种权衡,以平衡可靠性,可用性和通用性的经常竞争要求。流行的DL框架历史上已经采用了基于图的延期执行式(低级)应用程序编程接口(API)。虽然有效,但使用此类界面的(传统)系统却很麻烦,容易出错,并且难以调试,维护和端口。相反,(现代)急切的执行风格的DL API促进了更易于调试,易于易错且更具扩展性的更高级别,命令和面向对象的(Python)程序,以牺牲跑步时间性能为代价。尽管混合方法旨在弥合两个范式,但它们需要非平凡的技术元数据,并在使用本机计划结构上表现出了一些局限性和已知问题。预计该项目将为现代命令和面向对象的DL计划做出实践分析和安全转换,从而显着提高其可靠性和可扩展性。首先,将挖掘出各种软件工程工件,以进行错误修复,(手动)重构(语义传播源代码源程序转换),并在有效执行命令式DL代码方面错过了机会。然后,对自动的分析和重构(i)迁移遗产,将执行式DL代码递延为更强大的命令式DL代码,以及(ii)指定其其他急切执行的势在果的DL代码应在运行时以图表的形式可靠,有效地执行。最后,将设计用于检测性能瓶颈和语义错误与基于图形的命令执行,否则热切执行的DL代码相关的新颖分析。这项贡献很重要,因为它填充了有效发展的技术,方法和工具的空隙,并不断发展,可信赖和高效的DL系统,这些系统普遍地使用了势在必行的和对象的DL编程。该奖项奖均反映了NSF的法定任务,并通过评估了基金会的范围,并通过评估了基金会的范围,并已被认为是值得一提的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study
How many mutex bugs can a simple analysis find in Go programs?
简单分析一下Go程序中可以发现多少互斥量bug?
A Tool for Rejuvenating Feature Logging Levels via Git Histories and Degree of Interest
通过 Git 历史记录和兴趣程度恢复功能日志级别的工具
QuerTCI: A Tool Integrating GitHub Issue Querying with Comment Classification
QuerTCI:GitHub问题查询与评论分类相结合的工具
  • DOI:
    10.5281/zenodo.6115404
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paing, Ye;Castro, Tatiana Vélez;Khatchadourian, Raffi
  • 通讯作者:
    Khatchadourian, Raffi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raffi Khatchadourian其他文献

Automated refactoring of legacy Java software to enumerated types
  • DOI:
    10.1007/s10515-016-0208-8
  • 发表时间:
    2007-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Raffi Khatchadourian
  • 通讯作者:
    Raffi Khatchadourian
Approach for Change Impact Analysis of Aspectual Requirements
方面需求变更影响分析方法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Chitchyan;A. Rashid;Raffi Khatchadourian
  • 通讯作者:
    Raffi Khatchadourian
Object Databases : an Analytical Approach
对象数据库:一种分析方法
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raffi Khatchadourian
  • 通讯作者:
    Raffi Khatchadourian
Rely-guarantee approach to reasoning about aspect-oriented programs
面向方面程序的推理的依赖保证方法
Contributing Factors to Pointcut Fragility
造成切入点脆弱性的因素
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Greenwood;A. Rashid;Raffi Khatchadourian
  • 通讯作者:
    Raffi Khatchadourian

Raffi Khatchadourian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raffi Khatchadourian', 18)}}的其他基金

EAPSI: Automated Refactoring of Legacy Java Frameworks to Annotation Types
EAPSI:将遗留 Java 框架自动重构为注释类型
  • 批准号:
    1015773
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship Award

相似国自然基金

靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
  • 批准号:
    32370966
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
  • 批准号:
    82371712
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: Practical Dynamic Program Reasoning Across Language Boundaries
SHF:小:跨语言边界的实用动态程序推理
  • 批准号:
    2146233
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF:Small:Making Effect Systems Practical with Polymorphism, Inference, and Prototyping Support
SHF:Small:通过多态性、推理和原型支持使效果系统变得实用
  • 批准号:
    2007582
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Practical and Formal Foundations for Intermittent Computer Systems
SHF:小型:间歇计算机系统的实用和正式基础
  • 批准号:
    2007998
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Making Strassen's Algorithm Practical
SHF:小:使 Strassen 的算法变得实用
  • 批准号:
    1714091
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Scalable and Practical Detection of Invariants for Software Inspection
SHF:小型:可扩展且实用的软件检查不变量检测
  • 批准号:
    1719155
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了