Collaborative Research: Development of Natural Language Processing Techniques to Improve Students' Revision of Evidence Use in Argument Writing
合作研究:开发自然语言处理技术以提高学生对论证写作中证据使用的修改
基本信息
- 批准号:2202347
- 负责人:
- 金额:$ 67.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Writing is foundational to learning in multiple disciplines. It is a critical process by which students make sense of ideas – particularly from source texts – and bring them to bear to demonstrate their emerging understanding of concepts and to make sound arguments. Recognizing the importance of argumentative writing, multiple educational technologies driven by natural language processing (NLP) have been developed to support students and teachers in these processes. However, evidence is modest that such systems improve writing skills, and this is especially the case for younger students. One reason is that NLP technologies have only recently matured to the point that it is possible to provide feedback keyed to the content of students’ writing. A second reason is that many students lack the strategic knowledge and skills needed to revise their essays even after receiving writing feedback. An educational technology that assesses students’ skill at revising their writing and that provides feedback on their revision attempts would support the development of this critical skill, while placing no additional burden on teachers. Such a technology has the potential to prepare a new generation of students for productively writing and revising argumentative essays, a skill they will need in order to be prepared for the educational and workplace settings of the future.To address the limitations of existing educational technologies for writing, the research team will develop a system that leverages NLP to provide students with formative feedback on the quality of their revisions. The team will 1) develop and establish the reliability and validity of new measures of revision quality in response to formative feedback on evidence use, 2) use NLP to automate the scoring of revisions using these measures, 3) provide formative feedback to students based on the automated revision scoring, and 4) evaluate the utility of this feedback in improving student writing and revision in classroom settings. The team hypothesizes that such a system will improve students’ implementation of feedback messages on text-based argument writing, leading toward more successful revision and ultimately more successful writing. For learning researchers and educators, the revision quality measures will provide detailed information about how students implement formative feedback. Few summative or formative assessments currently exist that provide this type of information. For technology researchers, the automated revision scoring will extend prior writing analysis research in novel ways, e.g., by assessing the quality of revisions between essay drafts and by incorporating alignment with prior formative feedback into the assessment. Multiple types of NLP models will be developed to examine tradeoffs between model type and differing evaluation dimensions such as reliability, transparency, and fairness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
写作是多学科学习的基础。这是一个关键的过程,学生通过这个过程来理解想法--特别是从原始文本中--并使他们承担起展示他们对概念的新兴理解和提出合理论点的能力。认识到议论文写作的重要性,自然语言处理(NLP)驱动的多种教育技术已经被开发出来,以支持学生和教师在这些过程中。然而,有少量证据表明,这种系统可以提高写作技能,对于年纪较小的学生来说尤其如此。一个原因是,NLP技术最近才成熟到可以根据学生写作内容提供反馈的程度。第二个原因是,许多学生即使在收到写作反馈后,也缺乏修改论文所需的战略知识和技能。一种评估学生修改写作技能并对他们的修改尝试提供反馈的教育技术将支持这一关键技能的发展,同时不会给教师带来额外的负担。这种技术有可能使新一代学生为高效写作和修改议论文做好准备,这是他们为未来的教育和工作环境做准备所需要的技能。为了解决现有写作教育技术的局限性,研究小组将开发一种系统,利用NLP为学生提供关于修改质量的形成性反馈。该团队将1)开发和建立针对证据使用的形成性反馈的新的修改质量测量的可靠性和有效性,2)使用NLP来使用这些测量来自动对修改进行评分,3)基于自动修改评分向学生提供形成性反馈,以及4)评估这种反馈在改进学生写作和课堂环境中修改的效用。该团队假设,这样的系统将改善学生对基于文本的论点写作的反馈信息的实施,导致更成功的修改,并最终导致更成功的写作。对于学习研究人员和教育工作者来说,修订质量措施将提供有关学生如何实施形成性反馈的详细信息。目前提供这类信息的总结性或形成性评估很少。对于技术研究人员,自动修改评分将以新颖的方式扩展先前的写作分析研究,例如,通过评估论文草稿之间的修改质量,以及通过将与先前形成性反馈的一致性纳入评估。将开发多种类型的NLP模型,以检查模型类型与不同评估维度(如可靠性、透明度和公正性)之间的权衡。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diane Litman其他文献
Persuasiveness of Generated Free-Text Rationales in Subjective Decisions: A Case Study on Pairwise Argument Ranking
主观决策中生成的自由文本理由的说服力:成对论证排名的案例研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mohamed S. Elaraby;Diane Litman;Xiang Lorraine Li;Ahmed Magooda - 通讯作者:
Ahmed Magooda
Enhancing Knowledge Retrieval with Topic Modeling for Knowledge-Grounded Dialogue
通过基于知识的对话的主题建模增强知识检索
- DOI:
10.48550/arxiv.2405.04713 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nhat Tran;Diane Litman - 通讯作者:
Diane Litman
Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community
与机器人对话:扩大 SLIVAR 社区参与和研究的提案
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Casey Kennington;Malihe Alikhani;Heather Pon;Katherine Atwell;Yonatan Bisk;Daniel Fried;Felix Gervits;Zhao Han;Mert Inan;Michael Johnston;Raj Korpan;Diane Litman;M. Marge;Cynthia Matuszek;Ross Mead;Shiwali Mohan;Raymond Mooney;Natalie Parde;Jivko Sinapov;Angela Stewart;Matthew Stone;Stefanie Tellex;Tom Williams - 通讯作者:
Tom Williams
Natural Language Processing and User Modeling: Synergies and Limitations
- DOI:
10.1023/a:1011174108613 - 发表时间:
2001-01-01 - 期刊:
- 影响因子:3.500
- 作者:
Ingrid Zukerman;Diane Litman - 通讯作者:
Diane Litman
Diane Litman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diane Litman', 18)}}的其他基金
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329274 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
EXP: Development of Human Language Technologies to Improve Disciplinary Writing and Learning through Self-Regulated Revising
EXP:人类语言技术的发展,通过自我调节的修改来改善学科写作和学习
- 批准号:
1735752 - 财政年份:2017
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Entrainment and Task Success in Team Conversations
RI:小型:协作研究:团队对话中的引导和任务成功
- 批准号:
1420784 - 财政年份:2014
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
Student Research Workshop in Computational Linguistics at the NAACL HLT 2010 Conference
NAACL HLT 2010 会议上计算语言学学生研究研讨会
- 批准号:
1022697 - 财政年份:2010
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
RI: Small: An Affect-Adaptive Spoken Dialogue System that Responds Based on User Model and Multiple Affective States
RI:Small:基于用户模型和多种情感状态进行响应的情感自适应口语对话系统
- 批准号:
0914615 - 财政年份:2009
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
Adapting to Student Uncertainty over and above Correctness in A Spoken Tutoring Dialogue System
在口语辅导对话系统中适应学生的不确定性而不是正确性
- 批准号:
0631930 - 财政年份:2006
- 资助金额:
$ 67.99万 - 项目类别:
Continuing Grant
Collaborative Research: Monitoring Student State in Tutorial Spoken Dialogue
协作研究:在教程口语对话中监控学生状态
- 批准号:
0328431 - 财政年份:2003
- 资助金额:
$ 67.99万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
- 批准号:
2331437 - 财政年份:2024
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337028 - 财政年份:2024
- 资助金额:
$ 67.99万 - 项目类别:
Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 67.99万 - 项目类别:
Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337027 - 财政年份:2024
- 资助金额:
$ 67.99万 - 项目类别:
Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
- 批准号:
2331438 - 财政年份:2024
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
- 批准号:
2405548 - 财政年份:2024
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
$ 67.99万 - 项目类别:
Continuing Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
- 批准号:
2420945 - 财政年份:2024
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
- 批准号:
2314254 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311878 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Standard Grant