Collaborative Research: Monitoring Student State in Tutorial Spoken Dialogue
协作研究:在教程口语对话中监控学生状态
基本信息
- 批准号:0328431
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research investigates the feasibility and utility of monitoring student emotions in spoken dialogue tutorial systems. While human tutors respond to both the content of student utterances and underlying perceived emotions, most tutorial dialogue systems cannot detect student emotions, and furthermore are text-based, which may limit their success at emotion prediction. While there has been increasing interest in identifying problematic emotions (e.g. frustration, anger) in spoken dialogue applications such as call centers, little work has addressed the tutorial domain.The PIs are investigating the use of lexical, syntactic, dialogue, prosodic and acoustic cues to enable a computer tutor to automatically predict and respond to student emotions. The research is being performed in the context of ITSPOKE, a speech-based tutoring dialogue system for conceptual physics. The PIs are recording students interacting with ITSPOKE, manually annotating student emotions in these as well as in human-human dialogues, identifying linguistic and paralinguistic cues to the annotations, and using machine learning to predict emotions from potential cues. The PIs are then deriving strategies for adapting the system's tutoring based upon emotion identification.The major scientific contribution will be an understanding of whether cues available to spoken dialogue systems can be used to predict emotion, and ultimately to improve tutoring performance. The results will be of value to other applications that can benefit from monitoring emotional speech. Progress towards closing the performance gap between human tutors and current machine tutors will also expand the usefulness of current computer tutors.
这项研究调查了在口语对话教程系统中监测学生情绪的可行性和实用性。 尽管人类导师对学生的话语的内容和潜在的感知情绪做出了反应,但大多数教程对话系统无法检测到学生的情绪,此外,基于文本,这可能会限制他们在情感预测方面的成功。 尽管在呼叫中心等口语对话应用中识别有问题的情绪(例如挫败感,愤怒)的兴趣越来越多,但很少的工作已经解决了教程领域。 这项研究是在Itspoke的背景下进行的,这是一种基于语音的辅导对话系统,用于概念物理。 PI正在录制学生与Ispoke互动,手动注释学生的情绪以及人类对话中的对话,识别注释的语言和副语言提示,并使用机器学习来预测潜在的线索。 然后,PI是根据情感识别来提出调整系统辅导的策略。主要的科学贡献将是对是否可以使用可用于口语对话系统的提示来预测情感,并最终用于提高辅导性能。 结果对于可以从监控情绪语音中受益的其他应用程序具有价值。 缩小人辅导员与当前机器导师之间的性能差距的进展也将扩大当前计算机导师的实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diane Litman其他文献
Persuasiveness of Generated Free-Text Rationales in Subjective Decisions: A Case Study on Pairwise Argument Ranking
主观决策中生成的自由文本理由的说服力:成对论证排名的案例研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mohamed S. Elaraby;Diane Litman;Xiang Lorraine Li;Ahmed Magooda - 通讯作者:
Ahmed Magooda
Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community
与机器人对话:扩大 SLIVAR 社区参与和研究的提案
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Casey Kennington;Malihe Alikhani;Heather Pon;Katherine Atwell;Yonatan Bisk;Daniel Fried;Felix Gervits;Zhao Han;Mert Inan;Michael Johnston;Raj Korpan;Diane Litman;M. Marge;Cynthia Matuszek;Ross Mead;Shiwali Mohan;Raymond Mooney;Natalie Parde;Jivko Sinapov;Angela Stewart;Matthew Stone;Stefanie Tellex;Tom Williams - 通讯作者:
Tom Williams
Enhancing Knowledge Retrieval with Topic Modeling for Knowledge-Grounded Dialogue
通过基于知识的对话的主题建模增强知识检索
- DOI:
10.48550/arxiv.2405.04713 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nhat Tran;Diane Litman - 通讯作者:
Diane Litman
Diane Litman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diane Litman', 18)}}的其他基金
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329274 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Development of Natural Language Processing Techniques to Improve Students' Revision of Evidence Use in Argument Writing
合作研究:开发自然语言处理技术以提高学生对论证写作中证据使用的修改
- 批准号:
2202347 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
EXP: Development of Human Language Technologies to Improve Disciplinary Writing and Learning through Self-Regulated Revising
EXP:人类语言技术的发展,通过自我调节的修改来改善学科写作和学习
- 批准号:
1735752 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Entrainment and Task Success in Team Conversations
RI:小型:协作研究:团队对话中的引导和任务成功
- 批准号:
1420784 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Student Research Workshop in Computational Linguistics at the NAACL HLT 2010 Conference
NAACL HLT 2010 会议上计算语言学学生研究研讨会
- 批准号:
1022697 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
RI: Small: An Affect-Adaptive Spoken Dialogue System that Responds Based on User Model and Multiple Affective States
RI:Small:基于用户模型和多种情感状态进行响应的情感自适应口语对话系统
- 批准号:
0914615 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Adapting to Student Uncertainty over and above Correctness in A Spoken Tutoring Dialogue System
在口语辅导对话系统中适应学生的不确定性而不是正确性
- 批准号:
0631930 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
肿瘤浸润NK细胞免疫检查点分子促进亚实性结节型肺腺癌逃逸免疫监视的机制研究
- 批准号:82303150
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YTHDC1介导的糖酵解促进肝细胞癌逃避免疫监视的机制研究
- 批准号:82372851
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
益生菌Akkermansia muciniphila产生尿石素A改善肿瘤免疫监视的机制研究
- 批准号:82372780
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
circ_0086264/miR-34a介导免疫检查点基因调控非小细胞肺癌逃逸NK细胞免疫监视并转移扩散的机制研究
- 批准号:82360530
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
衰老成纤维细胞通过逃逸巨噬细胞免疫监视加速皮肤衰老的机制研究
- 批准号:82373462
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Application of the Telemedicine for Reach, Education, Access, and Treatment delivery model to engage emerging adults in Diabetes Self-Management Education and Support (TREAT-ED)
应用远程医疗覆盖、教育、获取和治疗提供模式,让新兴成年人参与糖尿病自我管理教育和支持 (TREAT-ED)
- 批准号:
10651947 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别: