NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
基本信息
- 批准号:2203239
- 负责人:
- 金额:$ 41.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent years have witnessed a tremendous growth in real-time applications in wirelessly networked systems, such as connected cars and multi-user augmented reality (AR). Wireless edge caching is another emerging application requiring high bandwidth, where optimal caching decisions would depend on the cache contents and dynamic user demand profiles. To meet the explosive demand, 5G and Beyond (B5G) technology promises to offer enhanced mobile broadband (eMBB) and ultra-reliable low-latency communications (URLLC) services. Meeting URLLC requirements is very challenging in wireless networks, and requires massive modifications to the current wireless system design. Deadline-aware wireless scheduling of real-time traffic has been a long-standing open problem. This collaborative project makes a paradigm shift to tackle these challenges thus spurring a new line of thinking for QoS guarantee in terms of ultra-low latency and high bandwidth in a variety of IoT applications, including B5G, autonomous driving, augmented reality, smart health and smart city, benefiting both the US and Finland. The proposed research will also be integrated with education activities at the PIs' institutions for graduate, undergraduate, and K-12 students via curriculum development, research experiences, and outreach. This project leverages recent advances on offline reinforcement learning (RL) to study two important problems in B5G, namely 1) deadline-aware wireless scheduling to guarantee low latency and 2) edge caching to achieve high bandwidth content delivery. In Thrust 1, physics-aided offline RL will be devised to train deadline-aware scheduling policies. Specifically, the Actor-Critic (A-C) method will be used for offline training of scheduling policies, consisting of two phases: 1) initialization of Actor structure via behavioral cloning and 2) policy improvement via the physics-aided A-C method. With a good model-based scheduling algorithm as the initial actor structure, the A-C method can be leveraged to yield a better scheduling policy, thanks to its nature of policy improvement. Further, innovative algorithms will be devised to address the outstanding problems in the A-C method, namely overestimation bias and high variance, and Meta-RL will be used for adaptation to distribution shift in nonstationary network dynamics. Thrust 2 focuses on wireless edge caching, an application where the storage capacities at both the network edge and user devices are harnessed to alleviate the need of high-bandwidth communications over long distances. The combinatorial nature of joint communication and caching optimization herein, with the uncertainties of system dynamics, calls for non-trivial design of machine learning algorithms. The PIs will leverage RL to investigate wireless edge caching thoroughly.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,无线联网系统中的实时应用(例如联网汽车和多用户增强现实(AR))取得了巨大的增长。 无线边缘缓存是另一种需要高带宽的新兴应用,其中最佳缓存决策将取决于该高速缓存内容和动态用户需求简档。 为了满足爆炸性的需求,5G及以后(B5 G)技术有望提供增强的移动的宽带(eMBB)和超可靠的低延迟通信(URLLC)服务。 满足URLLC要求在无线网络中是非常具有挑战性的,并且需要对当前无线系统设计进行大量修改。 实时业务的截止时间感知无线调度一直是一个长期存在的开放问题。该合作项目实现了范式转变,以应对这些挑战,从而激发了各种物联网应用中超低延迟和高带宽方面的QoS保证的新思路,包括B5 G,自动驾驶,增强现实,智能健康和智能城市,使美国和芬兰受益。拟议的研究还将通过课程开发,研究经验和推广活动,与PI机构的研究生,本科生和K-12学生的教育活动相结合。该项目利用离线强化学习(RL)的最新进展来研究 B5 G中的两个重要问题,即1)最后期限感知无线调度以保证低延迟,以及2)边缘缓存以实现高带宽内容递送。 在Thrust 1中,将设计物理辅助的离线RL来训练截止日期感知的调度策略。具体而言,Actor-Critic(A-C)方法将用于调度策略的离线训练,包括两个阶段:1)通过行为克隆初始化Actor结构,2)通过物理辅助的A-C方法改进策略。以一个好的基于模型的调度算法作为初始参与者结构,A-C方法可以被利用来产生更好的调度策略,这要归功于其策略改进的性质。此外,创新的算法将被设计来解决在A-C方法的突出问题,即高估偏差和高方差,和Meta-RL将被用于适应非平稳网络动态的分布转移。 Thrust 2专注于无线边缘缓存,这是一种利用网络边缘和用户设备的存储容量来缓解长距离高带宽通信需求的应用。本文中的联合通信和高速缓存优化的组合性质以及系统动态的不确定性要求机器学习算法的非平凡设计。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CLARE: Conservative Model-Based Reward Learning for Offline Inverse Reinforcement Learning
- DOI:10.48550/arxiv.2302.04782
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Sheng Yue;Guan Wang;Wei Shao;Zhaofeng Zhang;Sen Lin;Junkai Ren;Junshan Zhang
- 通讯作者:Sheng Yue;Guan Wang;Wei Shao;Zhaofeng Zhang;Sen Lin;Junkai Ren;Junshan Zhang
Adaptive Ensemble Q-learning: Minimizing Estimation Bias via Error Feedback
- DOI:10.48550/arxiv.2306.11918
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Hang Wang;Sen Lin;Junshan Zhang
- 通讯作者:Hang Wang;Sen Lin;Junshan Zhang
MetaGater: Fast Learning of Conditional Channel Gated Networks via Federated Meta-Learning
- DOI:10.1109/mass52906.2021.00031
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Sen Lin;Li Yang;Zhezhi He;Deliang Fan;Junshan Zhang
- 通讯作者:Sen Lin;Li Yang;Zhezhi He;Deliang Fan;Junshan Zhang
Scheduling Real-Time Wireless Traffic: A Network-Aided Offline Reinforcement Learning Approach
- DOI:10.1109/jiot.2023.3304969
- 发表时间:2023-12-15
- 期刊:
- 影响因子:10.6
- 作者:Wan,Jialin;Lin,Sen;Zhang,Tao
- 通讯作者:Zhang,Tao
Continual Learning of Generative Models with Limited Data: From Wasserstein-1 Barycenter to Adaptive Coalescence
- DOI:10.1109/tnnls.2023.3251096
- 发表时间:2021-01
- 期刊:
- 影响因子:10.4
- 作者:M. Dedeoglu;Sen Lin;Zhaofeng Zhang;Junshan Zhang
- 通讯作者:M. Dedeoglu;Sen Lin;Zhaofeng Zhang;Junshan Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junshan Zhang其他文献
Privacy-aware Data Trading(中国计算机学会认定的网络与信息安全领域最高级别的三大A类国际期刊之一,中科院一区TOP,影响因子:7.178)
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:6.8
- 作者:
Shengling Wang;Lina Shi;Junshan Zhang;Xiuzhen Cheng;Jiguo Yu - 通讯作者:
Jiguo Yu
Networked Information Gathering in Stochastic Sensor Networks: Compressive Sensing, Adaptive Network Coding and Robustness
- DOI:
10.21236/ada590144 - 发表时间:
2013-09 - 期刊:
- 影响因子:0
- 作者:
Junshan Zhang - 通讯作者:
Junshan Zhang
CL-LSG: Continual Learning via Learnable Sparse Growth
CL-LSG:通过可学习的稀疏增长持续学习
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Li Yang;Sen Lin;Junshan Zhang;Deliang Fan - 通讯作者:
Deliang Fan
A two-phase utility maximization framework for wireless medium access control
无线媒体访问控制的两阶段效用最大化框架
- DOI:
10.1109/twc.2007.05159 - 发表时间:
2007 - 期刊:
- 影响因子:10.4
- 作者:
D. Zheng;Junshan Zhang - 通讯作者:
Junshan Zhang
Critical behavior of blind spots in sensor networks.
传感器网络盲点的关键行为。
- DOI:
10.1063/1.2745232 - 发表时间:
2007 - 期刊:
- 影响因子:2.9
- 作者:
Liang Huang;Y. Lai;Kwangho Park;Junshan Zhang;Zhifeng Hu - 通讯作者:
Zhifeng Hu
Junshan Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junshan Zhang', 18)}}的其他基金
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
- 批准号:
2203238 - 财政年份:2021
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2203412 - 财政年份:2021
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
- 批准号:
2130125 - 财政年份:2021
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
- 批准号:
2202126 - 财政年份:2021
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
- 批准号:
2121222 - 财政年份:2021
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003081 - 财政年份:2020
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
- 批准号:
1739344 - 财政年份:2017
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
TWC SBE: Small: Towards an Economic Foundation of Privacy-Preserving Data Analytics: Incentive Mechanisms and Fundamental Limits
TWC SBE:小型:迈向隐私保护数据分析的经济基础:激励机制和基本限制
- 批准号:
1618768 - 财政年份:2016
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
EARS: Joint Optimization of RF Design and Smartphone Sensing: From Adaptive Sniffing to WAZE-Inspired Spectrum Sharing
EARS:射频设计和智能手机传感的联合优化:从自适应嗅探到受 WAZE 启发的频谱共享
- 批准号:
1547294 - 财政年份:2015
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
An Exchange Market Approach for Mobile Crowdsensing
移动群智感知的交易市场方法
- 批准号:
1408409 - 财政年份:2014
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
相似海外基金
NSF-AoF: NeTS: Small: Local 6G Connectivity: Controlled, Resilient, and Secure (6G-ConCoRSe)
NSF-AoF:NetS:小型:本地 6G 连接:受控、弹性和安全 (6G-ConCoRSe)
- 批准号:
2326599 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
NSF-AoF: CIF: Small: Distributed AI for enhanced security in satellite-aided wireless navigation (RESILIENT)
NSF-AoF:CIF:小型:分布式 AI,用于增强卫星辅助无线导航的安全性(弹性)
- 批准号:
2326559 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225577 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
NSF-AoF: SOLID: System-wide Operation via Learning In-device Dissimilarities
NSF-AoF:SOLID:通过学习设备内差异进行系统范围的操作
- 批准号:
2225555 - 财政年份:2022
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
- 批准号:
2225576 - 财政年份:2022
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
- 批准号:
2225617 - 财政年份:2022
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
NSF-AoF: Impact of user, environment, and artificial surfaces on above-100 GHz wireless communications
NSF-AoF:用户、环境和人造表面对 100 GHz 以上无线通信的影响
- 批准号:
2133655 - 财政年份:2022
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant